Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy z Purdue University stworzyli magnetyczny ferropapier, który może zostać wykorzystany np. do budowy miniaturowych silników dla narzędzi chirurgicznych, niewielkich nożyczek do cięcia komórek czy niezwykle małych głośników.

Materiał otrzymano dzięki zaimpregnowaniu zwykłego papieru - w tej roli można użyć nawet papieru gazetowego - w mieszaninie oleju mineralnego i magnetycznych nanocząstek z tlenku żelaza. Tak zaimpregnowany papier może być poruszany za pomocą pola magnetycznego. Następnie pokrywa się go warstwą biokompatybilnego tworzywa sztucznego. Chroni ono papier przed wilgocią, a impregnat przed wyparowaniem. Ponadto zwiększa wytrzymałość, elastyczność i sztywność papieru.

Papier jest porowaty, a więc można na nim umieścić wiele nanocząstek. Jest jednocześnie miękki, a zatem nie uszkodzi komórek czy tkanek, przyda się więc do przeprowadzania mało inwazyjnych zabiegów. Ponadto jest tani.

Jak zapewnia twórca ferropapieru, profesor Babak Ziaie, jego produkcja nie wymaga dostępu do specjalistycznego laboratorium, więc można go wykorzystywać w szkołach i na uczelniach podczas zajęć z robotyki czy mechaniki.

Co więcej, do produkcji ferropapieru szczególnie dobrze nadają się najtańsze gatunki papieru, jak np. gazetowy, gdyż charakteryzują się one dużą porowatością.

Szczegóły produkcji oraz właściwości ferropapieru zostaną omówione podczas 23. międzynarodowej konferencji IEEE na temat systemów mikroelektromechanicznych, która odbędzie się w Hongkongu pod koniec bieżącego miesiąca.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Coraz więcej robi sie z papieru. Papierowe akumulatory, silniki:) może jednak zajechaliśmy za daleko, a proste rozwiązania przegapiliśmy. Powoli sie to chyba zmienia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Heh, tylko czekać na papierzany rower - lekki i w razie czego składany do aktówki :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wątpię żeby się dało taki zrobić - pewnie kierowcy ciągle by go czytali i powodowali mnóstwo wypadków :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      NASA jest o krok bliżej wysłania astronautów na Księżyc. W Stennis Space Center zakończono właśnie ważny test silników Space Launch System. Po czterech latach pracy wszystkie 16 byłych głównych silników promów kosmicznych uzyskało niezbędne zgody do wykorzystania ich w misjach SLS. Te 16 silników pozwoli na przeprowadzenie czterech pierwszych misji.
      Ponadto NASA podpisała z firmą Aerojet Rocketdyne kontrakt na budowę kolejnych silników RS-25 dla SLS. Ponadto seria testów prowadzonych przez ostatnich 51 miesięcy dowiodła, że silniki RS-25 mogą pracować z większą niż dotychczas mocą, wymaganą przy SLS.
      Silniki mają obecnie zezwolenie na wykorzystanie w misji załogowej na Księżyc, która będzie misją przygotowawczą do wyprawy na Marsa, mówi Johnny Heflin, wicedyrektor SLS Liquid Engines Office w Marshall Space Flight Center. Jesteśmy więc w stanie zapewnić moc niezbędną do podróży na Księżyc i dalej.
      Testy RS-25 rozpoczęły się 9 stycznia 2015 roku, kiedy to na 500 sekund uruchomiono wersję rozwojową silnika, oznaczoną kodem 0525. Pierwszą pełną wersję silników dla SLS przetestowano 10 marca 2016 roku. W sumie przeprowadzono 32 testy wersji rozwojowych i pełnych, w czasie których silniki pracowały w sumie przez ponad 4 godziny.
      Warto przypomnieć, że silniki RS-25 są najlepiej sprawdzonymi silnikami rakietowymi na świecie. Wzięły one udział w 135 misjach promów kosmicznych. Gdy program promów został zakończony w 2011 roku NASA dysponowała dodatkowymi 16 silnikami, które zmodyfikowano na potrzeby SLS. Początkowo silniki te wyprodukowano z myślą o dostarczeniu pewnego określonego poziomu mocy, określonego jako 100%. Jeszcze przed zakończeniem programu promów kosmicznych silniki udoskonalono tak, by dostarczały 104,5% mocy. Jednak na potrzeby SLS musiały one zostać ponownie rozbudowane.
      W tym celu NASA musiała opracować nowy kontroler silnika, który monitoruje jego pracę i służy jako interfejs pomiędzy silnikiem a rakietą. Pierwsze testy nowego kontrolera odbyły się w marcu 2017 roku. Wczoraj przetestowano 17. kontroler, zapewniając 16 silnikom RS-25 odpowiedni zapas.
      Po opracowaniu nowego kontrolera NASA musiała udowodnić, że silniki mogą osiągnąć wymaganą moc 111%. Gdy się to udało, konieczne było dalsze wzmocnienie silników tak, by miały one zapas mocy. W lutym 2018 roku silniki uruchomiono na 50 sekund z mocą 113%. Czas ten stopniowo wydłużano podczas kolejnych testów. W końcu w lutym bieżącego roku RS-25 były w stanie pracować z mocą 113% przez 510 sekund.
      Wczoraj przeprowadzono zaś ostateczne testy silnika RS-25 oznaczonego numerem 2062. To właśnie ten silnik zostanie wykorzystany w Exploration Mission-2, w czasie której astronauci polecą w kapsule Orion na orbitę Księżyca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Basy rapu mogą pomóc w podtrzymaniu pracy wszczepialnego czujnika nacisku. Naukowcy z Purdue University zauważyli bowiem, że fale akustyczne (szczególnie te z rapu) skutecznie go doładowują. Urządzenie będzie miało wiele zastosowań. Już teraz wspomina się o pacjentach z tętniakami czy wywołanym paraliżem nietrzymaniem moczu.
      Jak tłumaczą projektanci, sercem sensora jest wibrujący wspornik. Muzyka o określonych częstotliwościach (200-500 herców) wywołuje drgania beleczki. Jako że wykonano ją z piezoelektrycznej ceramiki, a konkretnie z tytaniano-cyrkonianu ołowiu (PZT), pod wpływem naprężeń na powierzchni pojawiają się ładunki elektryczne. Energia zostaje zmagazynowana w kondensatorze. Czujnik ma długość ok. 2 cm. Zespół z Purdue przetestował go w balonie wypełnionym wodą.
      Muzyka osiąga właściwą częstotliwość tylko w pewnych momentach, np. gdy grają mocne basy - tłumaczy Babak Ziaie. Kiedy częstotliwość wychodzi poza właściwy zakres, beleczka przestaje drgać, automatycznie wysyłając do czujnika ładunek elektryczny. Sensor mierzy ciśnienie, a dane przesyła w postaci sygnałów radiowych (są one widoczne na oscyloskopie). Ponieważ częstotliwość stale się zmienia w zależności od rytmu utworu, czujnik przełącza się między interwałami gromadzenia ładunku i przesyłu danych.
      Ziaie dodaje, że pomiar trwa zaledwie chwilę. Do monitorowania ciśnienia krwi czy moczu w pęcherzu wystarczy parę minut raz na godzinę.
      Odbiornik sygnału można umieścić w odległości kilkudziesięciu centymetrów od pacjenta. Urządzenie doładowuje się, oczywiście, nie tylko pod wpływem muzyki. Wystarczy odtwarzać niestanowiące kompozycji dźwięki o konkretnej częstotliwości. Odtwarzanie dźwięków bywa jednak drażniące, dlatego pomyśleliśmy, że wykorzystanie muzyki byłoby czymś nowym i przyjemniejszym estetycznie. Eksperymentowano z 4 rodzajami muzyki: rapem, jazzem, bluesem i rokiem. Rap okazał się najlepszy, ponieważ zawiera dużo dźwięków o niskich częstotliwościach, w szczególności basów.
      Ziaie podkreśla, że urządzenie pomysłu jego zespołu stanowi świetną alternatywę dla czujnika z bateriami, które trzeba co jakiś czas wymieniać.
    • przez KopalniaWiedzy.pl
      By zwiększyć siłę oddziaływania radio- i chemioterapii, opracowano miniaturowy generator tlenu, który wszczepia się do guzów litych. Jego autorem jest prof. Babak Ziaie z Purdue University.
      Ziaie od lat pracuje nad różnego rodzaju urządzeniami medycznymi, głównie dla onkologów. Przed prawie 2 laty zaproponował magnetyczny ferropapier. Przewidywano, że zostanie on wykorzystany np. do budowy miniaturowych silników dla narzędzi chirurgicznych, niewielkich nożyczek do cięcia komórek czy niezwykle małych głośników. W 2008 r. w jego laboratorium pracowano nad uproszczoną wersją dozymetru, by lekarze mogli precyzyjnie określić ilość promieniowania, jaką podczas radioterapii zaaplikowano guzowi.
      Najnowsza technologia Amerykanów jest przeznaczona dla guzów litych, w których centrum naturalnie występują niewielkie stężania tlenu. To niekorzystne zjawisko, ponieważ skuteczna radioterapia wymaga tlenu. To właśnie z tego powodu niektóre hipoksyczne [niedotlenione] obszary trudno zabić. Raki trzustki i szyjki macicy są chronicznie hipoksyczne. Jeśli wygeneruje się tlen, można jednak zwiększyć skuteczność radio- i chemioterapii – wyjaśnia Ziaie.
      W niektórych komórkach nowotworowych mamy do czynienia z chroniczną hipoksją, ponieważ znajdują się one zbyt daleko od naczynia krwionośnego. Są promieniooporne, ponieważ brakuje w nich tlenu odpowiedzialnego za utrwalanie wywołanych promieniowaniem uszkodzeń DNA. Wszczepialny mikrogenerator tlenu rozwiązuje ten problem. Urządzenie otrzymuje sygnały ultradźwiękowe i wykorzystuje niewielkie napięcie do elektrolizy wody do tlenu i wodoru. Umieszczamy urządzenie wewnątrz guza i wystawiamy go na oddziaływanie ultradźwięków. Energia ultradźwięków zasila aparat, pozwalając uzyskać tlen.
      Urządzenie skonstruowano w Centrum Nanotechnologii Bircka Purdue University. Przetestowano je na rakach trzustki zaimplantowanych myszom. Okazało się, że w grupie eksperymentalnej guzy kurczyły się szybciej niż u gryzoni przechodzących standardowe leczenie. Aparat ma nieco poniżej 1 cm długości. Wprowadza się go do guza za pomocą igły do biopsji hipodermicznej.
      Ze szczegółowymi wynikami badań można się zapoznać na łamach pisma Transactions on Biomedical Engineering.
    • przez KopalniaWiedzy.pl
      Na łamach Nature poinformowano o stworzeniu pierwszego napędzanego prądem silnika z pojedynczej molekuły. Urządzenie przyda się zarówno w nanotechnologii jak i medycynie.
      Już poprzednio tworzono silniki z molekuł napędzane światłem lub reakcjami chemicznymi, jednak działały one w dużych grupach. Jednocześnie pracowało wiele takich silników. Charles Snykes, chemik z Tufts University mówi, że wynalazek jego i jego kolegów jest o tyle wyjątkowy, iż pozwala na uruchamianie pojedynczych molekuł.
      Molekułę siarczku butylowo-metylowego umieszczono na powierzchni pokrytej miedzią. Za pomocą końcówki dźwigienki mikroskopu elektronowego do molekuły dostarczono ładunek elektryczny i obserwowano jej pracę. Molekuła kręcisię w obu kierunkach z prędkością do 120 obrotów na sekundę. W dłuższym czasie, po uśrednieniu liczby obrotów, zaobserwowano przewagę obrotów w jednym kierunku.
      Doktor Sykes uważa, że po niewielkiej modyfikacji molekuła może zostać wykorzystana do generowania mikrofal lub w roli systemu nanoelektromechanicznego.
      Naukowcy chcą w najbliższym czasie połączyć kilka molekuł w łańcuch i obserwować, w jaki sposób będzie się w nim rozprzestrzeniał ruch obrotowy. Tego typu systemy mogą być w przyszłości używane np. do precyzyjnego dostarczania leków w konkretne miejsca organizmu.
    • przez KopalniaWiedzy.pl
      Japończycy stworzyli laserowy system zapłonowy dla samochodów, dzięki któremu nie tylko zaoszczędzimy benzynę, ale zmniejszymy też emisję tlenków azotu - głównego składnika smogu. Nowy zapłon zbudowany jest z ceramiki, zatem można go tanio produkować w dużych ilościach.
      W obecnie stosowanym zapłonie iskrowym wykorzystuje się wysokie napięcie i iskrę przeskakującą pomiędzy dwoma elektrodami. Iskra zapala mieszankę paliwowo-powietrzną. Produktem spalania mieszanki są tlenki azotu. Można co prawda zmienić skład mieszanki tak, by do środowiska trafiało mniej NOx, jednak taka mieszanka zawiera mniej paliwa, a zatem do jej zapalenia konieczne jest wykorzystanie wyższego napięcia. Niestety, iskry powstające dzięki wyższemu napięciu prowadzą do szybkiego zużywania się elektrod, cała konstrukcja jest zatem niepraktyczna. Tymczasem lasery, zapalające mieszankę dzięki skoncentrowanej energii optycznej, nie zawierają elektrod, zatem nie dochodzi do ich korozji.
      Takunori Taira z japońskiego Narodowego Instytutu Nauk Naturalnych wymienia kolejną zaletę laserów. Urządzenia takie poprawiają też efektywność silnika. Konwencjonalne świece zapłonowe umieszczone są na cylindrach i zapalają mieszankę gdy ta zajdzie się blisko nich. Jednak zimne metalowe elektrody oraz ściany cylindra błyskawicznie absorbują ciepło powstałe podczas eksplozji mieszanki, tłumiąc płomień gdy tylko powstanie. Taira mówi, że lasery można wycelować w środek mieszanki, zapalając ją od wewnątrz, dzięki czemu gazy będą rozprzestrzeniały się symetrycznie, a proces taki będzie przebiegał nawet trzykrotnie szybciej niż w konwencjonalnych rozwiązaniach. Ponadto lasery wyzwalają energię w ciągu nanosekund, podczas gdy świecom zajmuje to milisekundy. „Odpowiednie dobranie czasu i szybkie spalanie są bardzo ważne. Im bardziej precyzyjny wybór momentu zapłonu, tym bardziej efektywne spalanie i lepsza ekonomia silnika" - mówi Taira.
      Dotychczas zaprzęgnięcie laserów do tego typu zadania było niemożliwe, gdyż musiałyby one skupić światło o mocy około 100 gigawatow na centymetr kwadratowy i wysyłać je w krótkich impulsach o energii większej niż 10 milidżuli każdy. Takie wymagania spełniały duże ciężkie lasery z laboratoriów naukowych.
      Japończycy poradzili sobie z tym problemem budując kompozytowy laser z ceramiki. Powstały one dzięki podgrzaniu ceramicznego proszku, przez co powstała przezroczysta struktura w której umieszczono jony metali.
      Japońskie lasery zbudowane są z dwóch segmentów składających się z itru, aluminium i galu. Jeden z segmentów wzbogacono neodymem, a drugi chromem. Laser ma jedynie 9 milimetrów średnicy i 11 milimetrów długości. Emituje on dwie wiązki światła, które jednocześnie zapalają mieszankę w dwóch miejscach. Dzięki temu pali się ona szybciej i bardziej równomiernie niż mieszanka zapalana w jednym miejscu.
      Zespół Tairy współpracuje obecnie z należącą do Toyoty DENSO Corporation. Celem współpracy jest stworzenie lasera emitującego trzy wiązki światła.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...