Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Robot - najlepszy przyjaciel chirurga?

Recommended Posts

Już niedługo prowadzenie operacji na bijącym sercu mogą stać się o wiele prostsze. Wszystko dzięki robotycznemu ramieniu dostosowującemu swoją pozycję do ruchów najważniejszego mięśnia organizmu.

Autorami wynalazku są inżynierowie z Laboratorium Informatyki, Robotyki i Mikroelektroniki w Montpellier: Rogério Richa, Philippe Poignet oraz Chao Liu. Opracowane przez nich urządzenie analizuje w czasie rzeczywistym ruchy bijącego serca oraz poruszających się płuc, a następnie - na podstawie zebranych informacji - tworzy matematyczny model pozwalający na przewidywanie kolejnych skurczów i rozkurczów związanych z pompowaniem krwi oraz wdechami i wydechami.

Wyniki obliczeń są przekazywane do robotycznego ramienia trzymającego narzędzia chirurgiczne. Na podstawie otrzymanych informacji urządzenie porusza się w sposób pozwalający na dostosowanie własnej pozycji do ruchów organów. Umożliwia to utrzymanie stałej odległości np. od ściśle określonego punktu na ścianie serca.

Dla chirurga prowadzącego operację korzyść z zastosowania tego wynalazku jest oczywista. Dzięki automatycznej regulacji położenia robotycznego ramienia lekarz może zachowywać się tak, jakby pracował na nieruchomym organie. Znacząco zwiększa to bezpieczeństwo zabiegu i ogranicza ryzyko popełnienia błędu.

Dodatkową zaletą jest możliwość uniknięcia procedury zatrzymania lub osłabienia krążenia, które często bywa konieczna podczas typowych operacji na otwartym sercu.

Data rynkowej premiery urządzenia nie została podana nawet w przybliżeniu. Można się jednak spodziewać, że jeżeli znajdzie się inwestor skłonny do sfinansowania dalszych badań nad jego rozwojem, robotyczne ramię może pojawić się na salach operacyjnych już za kilka lat.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Choroby układu krążenia są główną przyczyną zgonów na świecie. Lepsze zrozumienie mechanizmów tych chorób pozwoliłoby na uratowanie wielu ludzi. Niezbędnym elementem jest tutaj zaś zrozumienie procesów molekularnych zachodzących w komórkach zdrowego serca. Naukowcy stworzyli właśnie wielką szczegółową mapę zdrowego mięśnia sercowego.
      Mapa powstała w ramach wielkiej inicjatywy Human Cell Atlas, której celem jest opisanie każdego typu komórek znajdujących się w ludzkim organizmie. Autorzy atlasu serca przeanalizowali niemal 500 000 indywidualnych komórek. Dzięki temu powstał najbardziej szczegółowy opis ludzkiego serca. Pokazuje on olbrzymią różnorodność komórek i ich typów. Jego autorzy scharakteryzowali sześć regionów anatomicznych serca. Opisali, w jaki sposób komórki komunikują się ze sobą, by zapewnić działanie mięśnia sercowego.
      Badania przeprowadzono na podstawie 14 zdrowych ludzkich serc, które uznano za nienadające się do transplantacji. Naukowcy połączyli techniki analizy poszczególnych komórek, maszynowego uczenia się oraz techniki obrazowania, dzięki czemu mogli stwierdził, które geny były aktywne, a które nieaktywne w każdej z komórek.
      Uczonym udało się zidentyfikować różnice pomiędzy komórkami w różnych regionach serca. Stwierdzili też, że w każdym obszar mięśnia sercowego zawiera specyficzny dla siebie zestaw komórek, co wskazuje, że różne obszary serca mogą różnie reagować na leczenie.
      Projekt ten to początek nowego sposobu rozumienia budowy serca na poziomie komórkowym. Dzięki lepszemu poznaniu różnic pomiędzy różnymi regionami serca możemy zacząć rozważać wpływ wieku, trybu życia oraz chorób i rozpocząć nową epokę w kardiologii, mówi współautor badań Daniel Reichart z Harvard Medical School.
      Po raz pierwszy tak dokładnie przyjrzano się ludzkiemu sercu, dodaje profesor Norbert Hubner z Centrum Medycyny Molekularnej im. Maxa Delbrücka. Poznanie pełnego spektrum komórek serca i ich aktywności genetycznej są niezbędne do zrozumienia sposobu funkcjonowania serca oraz odkrycia, w jaki sposób reaguje ono na stres i choroby.
      Ze szczegółami badań można zapoznać się w artykule Cells of the adult human heart, opublikowanym na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas operacji guza mózgu 53-letnia Dagmar Turner grała na skrzypcach. W ten sposób neurochirurdzy z King's College London (KCL) upewniali się, że nie zostaną uszkodzone tak ważne dla muzyka obszary odpowiedzialne za drobne ruchy dłoni i koordynację.
      Po napadzie padaczkowym w 2013 r. u kobiety zdiagnozowano wolno rosnącego glejaka. Była specjalistka ds. zarządzania z Isle of Wight, która gra w Isle of Wight Symphony Orchestra i udziela się w różnych towarzystwach chóralnych, przeszła biopsję i poddała się radioterapii w lokalnym szpitalu specjalistycznym. Gdy jesienią 2019 r. stało się jasne, że guz urósł i stał się bardziej agresywny, Dagmar zaczęła się skłaniać ku operacji. By omówić dostępne opcje, umówiła się na wizytę u polecanego specjalisty - prof. Keyoumarsa Ashkana z KCL.
      Guz Dagmar był zlokalizowany w prawym płacie czołowym, blisko obszaru kontrolującego drobne ruchy lewej dłoni. Dagmar opowiedziała o swojej miłości do skrzypiec profesorowi, który również jest pasjonatem muzyki (Ashkan ma wykształcenie nie tylko medyczne, ale i muzyczne i jest wytrawnym pianistą).
      By wyjść naprzeciw oczekiwaniom pacjentki, zespół z King's College London opracował plan. Przed operacją przez 2 godziny opracowywano szczegółową mapę jej mózgu, by dokładnie określić obszary aktywne w czasie gry na skrzypcach oraz regiony odpowiedzialne za motorykę i funkcje językowe. Kobieta wyraziła też zgodę na wybudzenie w trakcie zabiegu, by mogła zagrać na instrumencie. W ten sposób można się było upewnić, że nie ulegną uszkodzeniu rejony kluczowe dla kontroli delikatnych ruchów dłoni.
      King's to jeden z największych ośrodków leczenia guzów mózgu w Wielkiej Brytanii. Każdego roku przeprowadzamy około 400 resekcji, które często wiążą się z wybudzaniem chorych, by przeprowadzić testy językowe. To jednak pierwszy raz, gdy miałem pacjenta grającego na instrumencie. Wiedzieliśmy, że gra na skrzypcach jest ważna dla Dagmar, dlatego tak istotne było zachowanie funkcji delikatnych obszarów mózgu, które na to pozwalają. Udało nam się usunąć ponad 90% guza [...] i zachować pełną sprawność lewej dłoni.
      Skrzypce to moja pasja. Gram, odkąd skończyłam 10 lat. Na myśl o tym, że mogłabym stracić tę zdolność, pękało mi serce, ale będący muzykiem profesor Ashkan rozumiał moje obawy. Zaplanowano wszystko, od mapowania mózgu po ułożenie w czasie operacji, tak by pacjentka mogła grać na skrzypcach. Dzięki nim mam nadzieję, że bardzo szybko wrócę do mojej orkiestry.
      Trzy dni po operacji Dagmar czuła się na tyle dobrze, że można ją było wypisać do domu. Będzie się znajdować pod opieką lokalnego szpitala.
      W tym miejscu warto przypomnieć o przypadku Roberta Alvareza, który podczas operacji usuwania gwiaździaka w 2018 r. w MD Anderson Cancer Center grał z kolei na gitarze. Także w USA, tym razem w Mayo Clinic, odbyła się operacja, podczas której do wzgórza cierpiącego na drżenie samoistne Rogera Frischa z Minnesota Orchestra wszczepiano elektrody do głębokiej stymulacji mózgu. Ponieważ drżenia były delikatne, lekarzom trudno byłoby stwierdzić, czy elektrody znajdują się w najlepszym możliwym miejscu. Rozwiązaniem okazało się uwzględnienie gry na skrzypcach w planie operacji. Zespół inżyniera Kevina Benneta opracował instrument, na którym Frisch mógłby wtedy grać (zaprojektowano mocowany do smyczka akcelerometr).
       

       

       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z Rutgers University stworzyli kierowanego USG robota do pobierania krwi, który radził sobie z tym zadaniem tak samo dobrze, a nawet lepiej niż ludzie. Odsetek skutecznych procedur wyliczony dla 31 pacjentów wynosił 87%. Dla 25 osób z łatwo dostępnymi żyłami współczynnik powodzenia sięgał zaś aż 97%.
      W urządzeniu znajduje się analizator hematologiczny z wbudowaną wirówką. Może ono być wykorzystywane przy łóżkach pacjentów, a także w karetkach czy gabinetach lekarskich.
      Wenopunkcja, czyli nakłuwanie żyły, by wprowadzić igłę bądź cewnik, to częsta procedura medyczna. W samych Stanach rocznie przeprowadza się ją ponad 1,4 mld razy. Wcześniejsze badania wykazały, że nie udaje się to u 27% pacjentów z niewidocznymi żyłami, 40% osób bez żył wyczuwalnych palpacyjnie i u 60% wyniszczonych chorych.
      Powtarzające się niepowodzenia związane z wkłuciem pod kroplówkę zwiększają ryzyko zakażeń czy zakrzepicy. Czas poświęcany na przeprowadzenie procedury się wydłuża, rosną koszty i liczba zaangażowanych w to osób.
      Takie urządzenie jak nasze może pomóc pracownikom służby zdrowia szybko, skutecznie i bezpiecznie pozyskać próbki, zapobiegając w ten sposób niepotrzebnym komplikacjom i bólowi towarzyszącemu kolejnym próbom wprowadzenia igły - podkreśla doktorant Josh Leipheimer.
      W przyszłości urządzenie może być wykorzystywane w takich procedurach, jak cewnikowanie dożylne, dializowanie czy wprowadzanie kaniuli tętniczej.
      Kolejnym etapem prac ma być udoskonalenie urządzenia, tak by zwiększyć odsetek udanych procedur u pacjentów z trudno dostępnymi żyłami. Jak podkreślają Amerykanie, dane uzyskane w czasie tego studium zostaną wykorzystane do usprawnienia sztucznej inteligencji w robocie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Robot z piórami gołębia to najnowsze dzieło naukowców z Uniwersytetu Stanforda. Korzysta ono z dodatkowego elementu, ułatwiającego ptakom latanie – możliwości manipulowania rozstawem piór i kształtem skrzydeł.
      David Lentink ze Stanforda przyglądał się sposobowi pracy skrzydeł, poruszając skrzydłami martwego gołębia. Zauważył, że najważniejszy dla zmiany kształtu skrzydeł są kąty poruszania się dwóch stawów: palca i nadgarstka. To dzięki ich zmianie sztywne pióra zmieniają kształt tak, że zmienia się cały układ skrzydeł, co znakomicie pomaga w kontroli lotu.
      Korzystając z tych doświadczeń Lentink wraz z zespołem zbudowali robota, którego wyposażyli w prawdziwe pióra gołębia.
      Robot to urządzenie badawcze. Dzięki niemu naukowcy z USA mogą prowadzić eksperymenty bez udziału zwierząt. Zresztą wielu testów i tak nie udało by się przeprowadzić wykorzystując zwierzęta. Na przykład uczeni zastanawiali się, czy gołąb może skręcać poruszając palcem tylko przy jednym skrzydle.
      Problem w tym, że nie wiem, jak wytresować ptaka, by poruszył tylko jednym palcem, a jestem bardzo dobry w tresurze ptaków, mówi Lentink, inżynier i biolog z Uniwersytetu Stanforda. Robotyczne skrzydła rozwiązują ten problem. Testy wykazały, że zgięcie tylko jednego z palców pozwala robotowi na wykonanie zakrętu, a to wskazuje, że ptaki również mogą tak robić.
      Uczeni przeprowadzili też próby chcąc się dowiedzieć, jak ptaki zapobiegają powstaniu zbyt dużych przerw pomiędzy rozłożonymi piórami. Pocierając jedno pióro o drugie zauważyli, że początkowo łatwo się one z siebie ześlizgują, by później się sczepić. Badania mikroskopowe wykazały, że na krawędziach piór znajdują się niewielkie haczyki zapobiegające ich zbytniemu rozłożeniu. Gdy pióra znowu się do siebie zbliżają, haczyki rozczepiają się. W tym tkwi ich tajemnica. Mają kierunkowe rzepy, które utrzymują pióra razem, mówi Lentink.
      Uczeni, aby potwierdzić swoje spostrzeżenia, odwrócili pióra i tak skonstruowane skrzydło umieścili w tunelu aerodynamicznym. Pęd powietrza utworzył takie przerwy między piórami, że wydajność skrzydła znacznie spadła.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjalistom ze Scripps Institution of Oceanography udało się przeprowadzić pierwsze w historii pomiary tętna płetwala błękitnego. Pomiarów dokonano w Zatoce Monterey za pomocą specjalnego urządzenia, które przez dobę było przymocowane do ciała zwierzęcia. Cztery przyssawki utrzymywały je w pobliżu lewej płetwy piersiowej, gdzie mogło ono rejestrować rytm serca.
      To ważne badania, gdyż opracowaliśmy technikę rejestrowania elektrokardiogramu i tętna największego zwierzęcia, jakie kiedykolwiek istniało na Ziemi, mówi Paul Ponganis. Tętno płetwala jest zgodne z naszymi przewidywaniami bazującymi na masie ciała, a uzyskane dane potwierdzają anatomiczne i biomechaniczne modele funkcjonowania układu krążenia tak dużych zwierząt, dodaje uczony.
      Uzyskane dane wskazują, że serce płetwali błękitnych pracuje blisko granicy wydajności, co może wyjaśniać, dlaczego zwierzęta te nie wyewoluowały w jeszcze większe. W zanurzeniu u płetwala błękitnego występuje bardzo powolna akcja serca (bradykardia), a w wynurzeniu serce bije z niemal maksymalną prędkością (tachykardia), co pozwala na dokonanie wymiany gazowej i powrót krwi do wszystkich tkanek, gdy zwierzę znajduje się na powierzchni. Tego typu badania pozwalają nam sprawdzić fizjologiczne granice związane z rozmiarami ciała, dodaje Ponganis.
      Zwierzęta, których organizmy działają na takich fizjologicznych ekstremach, pozwalają nam zrozumieć biologiczne ograniczenia rozmiarów. Mogą być też szczególnie wrażliwe na zmiany środowiska wpływające na ich źródła pożywienia. Zatem takie badania mogą być istotne dla naszych wysiłków na rzecz zachowania zagrożonych gatunków, stwierdza główny autor badań, profesor Jeremy Goldbogen.
      Przed 10 laty Ponganis i Goldbogen dokonali pomiarów tętna u nurkującego pingwina cesarskiego i zaczęli się zastanawiać, czy uda się to wykonać w przypadku płetwala błękitnego. Prawdę mówiąc, wątpiłem w to. Musielibyśmy znaleźć płetwala, umieścić urządzenie w odpowiednim miejscu, musiałoby mieć ono dobry kontakt z jego skórą, a przede wszystkim musiałoby działać i rejestrować dane, mówi Goldbogen.
      Naukowcy wiedzieli, że ich urządzenie dobrze działa na mniejszych waleniach przetrzymywanych w niewoli, ale płetwal błękitny to zupełnie inna historia. Przede wszystkim nie odwróci się on na grzbiet, by umożliwić przyczepienie urządzenia. Ponadto od strony brzusznej skóra płetwala przypomina miech akordeonu i silnie się rozciąga podczas jedzenia, więc urządzenie rejestrujące z łatwością mogło się odczepić.
      Lata przygotowań przyniosły jednak dobry skutek. Urządzenie udało się dobrze umocować już za pierwszym razem. A zarejestrowane dane pokazały, jak pracuje serce płetwala.
      Okazało się, że gdy zwierzę nurkuje, jego serce zwalnia średnio do 4–8 uderzeń na minutę. Najwolniejsze zarejestrowane tempo wyniosło 2 uderzenia na minutę. Gdy badany płetwal znalazł się na największej zarejestrowanej głębokości – 184 metrach – gdzie pozostawał przez 16,5 minuty i żerował, jego puls wzrósł do około 5 uderzeń na minutę, a następnie znowu zwolnił. Gdy zwierzę się najadło i zaczęło wynurzać, jego serce przyspieszyło. Największe tempo, 25–37 uderzeń na minutę, osiągnęło na powierzchni podczas oddychania.
      Uzyskane wyniki były nieco zaskakujące, gdyż najwyższe tętno niemal przekraczało wyliczenia oparte na modelach, a tętno najniższe było o 30–50 procent wolniejsze niż mówiły przewidywania. Naukowcy sądzą, że zaskakująco wolne tętno można wyjaśnić elastycznym łukiem aorty, który powoli się kurczy, zapewniając dodatkowy przepływ krwi pomiędzy uderzeniami serca. Z kolei zaskakująco szybkie tempo bicia serca na powierzchni można tłumaczyć jego ruchem i kształtem, które powodują, że ciśnienie podczas poszczególnych skurczów nie zakłóca przepływu krwi.
      Patrząc na badania z szerszej perspektywy, wyjaśniają one, dlaczego nigdy nie pojawiło się zwierzę większe od płetwala błękitnego. Jeszcze większe ciało ma tak duże potrzeby energetyczne, że przekraczałoby to możliwości serca.
      Naukowcy już planują kolejne badania. Chcą np. dodać do swojego urządzenia akcelerometr, by sprawdzić, jak różne aktywności płetwala wpływają na tempo kurczenia się jego serca. Spróbują też zbadać inne wieloryby.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...