Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W brytyjskim National Physical Laboratory powstał najmniejszy bałwan świata. Jego średnica to 10 mikrometrów, a to zaledwie jedna piąta grubości ludzkiego włosa.

Wykonano go z dwóch koralików, używanych na co dzień do kalibracji mikroskopów elektronowych. Uśmiech i oczy wyfrezowano za pomocą skoncentrowanego strumienia jonów. Nos o szerokości poniżej 1 mikrometra uzyskano podobnie, bo dzięki osadzaniu jonów platyny.

Fizycy połączyli poszczególne elementy bałwana, wykorzystując system do nanomanipulacji, a kule zespolono jonami platyny. Zmontowane dzieło stanęło na silikonowej tacce z mikroskopu sił atomowych.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

eee...

jak bałwan nie jest ze śniegu to jak dla mnie się nie liczy...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Season's greetings" - poprawność polityczna przekroczyła granice absurdu...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Naukowcy a nawet nie wiedzą że bałwan musi mieć miotłę i być ze śniegu... nie wspominając o tych "Życzeniach sezonowych"  :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

i chyba co najwazniejsze - nie zdobyli do tego okazu najmniejszej marchewki na swiecie...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Oskórek chrząszczy mieni się prawdziwą feerią barw. Co się jednak dzieje, gdy te piękne owady umierają i ulegają fosylizacji? Ile pierwotnego koloru (i czy w ogóle) zachowuje się w skamielinie? Teraz już można odpowiedzieć na te pytania, bo dzięki mikroskopom elektronowym udało się z dużym prawdopodobieństwem odtworzyć wygląd chrząszczy żyjących od 15 do 47 mln lat temu.
      Kolory, jakie widzimy u chrząszczy, są skutkiem oddziaływania promieni świetlnych z oskórkiem. Drobne twory z chityny m.in. zaginają i odbijają światło, by wzmocnić fale o konkretnej długości. Z tego powodu mówi się o kolorach strukturalnych, które do zaistnienia nie wymagają obecności pigmentu.
      Amerykanie analizowali oskórki szeregu okazów, by ustalić, jak fosylizacja, w czasie której pewne atomy i cząsteczki mogą zostać usunięte lub zastąpione, wpłynęła na właściwości optyczne kutykuli.
      Okazało się, że choć sama struktura się zachowała, jej budowa chemiczna rzeczywiście się zmieniła. Doszło do przesunięcia ubarwienia ku czerwieni, czyli ku falom o większej długości. Z tego powodu owad fioletowy za życia stawał się po śmierci i upływie wielu lat niebieski, a niebieski ulegał zzielenieniu. Jak wyjaśnia McNamara, zmieniał się współczynnik załamania oskórka [czyli skład chemiczny materiału].
      Członkowie zespołu podkreślają, że stopień przesunięcia ku czerwieni jest różny u poszczególnych okazów i że wszystkie badane egzemplarze pochodzą z podobnych osadów. Nie wiadomo więc, co by się stało, gdyby prehistoryczne chrząszcze zmarły i leżały gdzie indziej. By stwierdzić, czy ewentualny kolor (lub brak koloru) jest prawdziwy, entomolodzy analizowali owady z 5 kenozoicznych biotopów.
    • przez KopalniaWiedzy.pl
      Dzięki grafenowym osłonom można uzyskać pod mikroskopem elektronowym precyzyjniejszy obraz bakterii. Widać je w naturalnych rozmiarach, wzrasta też rozdzielczość.
      Grafen tworzy warstwę o jednoatomowej grubości, jest nieprzepuszaczalny, optycznie przezroczysty, poza tym charakteryzuje go wysoka przewodność cieplna. Choć ma grubość zaledwie jednego atomu, nie przepuszcza nawet najdrobniejszych cząsteczek. Co więcej, jest wytrzymały i bardzo elastyczny, można mu więc nadać każdy kształt – wyjaśnia prof. Vikas Berry z Uniwersytetu Stanowego Kansas.
      Zespół Berry'ego zajmuje się badaniem grafenu już od 3 lat, jednak dopiero ostatnio naukowcy wpadli na pomysł wykorzystania tego nanomateriału w obrazowaniu komórek pod mikroskopem elektronowym. Wiązka elektronów może być w urządzeniu emitowana tylko w wysokiej próżni. Wytwarza się ją dzięki systemowi pomp. Prowadzi to jednak do usunięcia wody z komórek (zawierają jej od 70 do 80%) i obkurczenia. W rezultacie trudno uzyskać dokładny obraz komórki i jej składowych w stanie naturalnym. Gdy jednak bakterię lub inną komórkę otoczy się grafenową kapsułką, woda pozostaje na swoim miejscu.
      Grafen można "owinąć" wokół bakterii na dwa sposoby. Pierwsza metoda polega na ułożeniu na niej arkusza nanomateriału (naukowcy porównują to do przykrywania kocem czy pościelą). Druga polega na umieszczeniu komórki w roztworze, gdzie arkusze ją opatulają ze wszystkich stron. Obie techniki uwzględniają wykorzystanie białka, która nasila wiązanie arkuszy ze ścianą komórkową. Podczas eksperymentów po zapakowaniu w grafen bakterie nie zmieniały wielkości przez pół godziny, co dawało dużo czasu na badania.
      Ponieważ grafen jest dobrym przewodnikiem ciepła i elektryczności, odprowadza je poza powłokę, zapewniając klarowny obraz. Nieosłonięte komórki bakteryjne wydają się zaś pod mikroskopem elektronowym ciemne i nie da się odróżnić ich ścian.
      Berry ma nadzieję, że dzięki pomysłowi jego zespołu w przyszłości będzie można w czasie rzeczywistym obserwować biochemię bakterii. Łatwiej też będzie badać białka, które zachowują się inaczej, gdy są suche, a inaczej, kiedy znajdują się w roztworze wodnym.
    • przez KopalniaWiedzy.pl
      Jak mała może być tablica okresowa pierwiastków? Bardzo mała. Naukowcy z University of Nottingham wyżłobili właśnie symbole 118 pierwiastków na ludzkim włosie. By tego dokonać i pobić rekord, musieli się posłużyć mikroskopem elektronowym i generatorem wiązek jonowych. Eksperymentalny włos pobrano z głowy prof. Martyna Poliakoffa.
      Profesor dostał miniaturową tablicę okresową w prezencie urodzinowym. Aby zademonstrować możliwości najnowszych technologii, specjalista ds. mikroskopii dr Mike Fay (główny autor włosianej tablicy Mendelejewa) i nanotechnolog dr Chris Parmenter
      też na płatku śniegu napis "Merry Christmas". Stanowiło to część większego projektu Sixty Symbols, prezentującego 60 symboli stosowanych w fizyce i astronomii.Chociaż pisanie na płatku śniegu jest z jednej strony sezonową przyjemnością, z drugiej stanowi znakomity sposób zademonstrowania niesamowitych możliwości narzędzi wykorzystywanych na co dzień przez naukowców w laboratorium – cieszy się prof. Philip Moriarty.
    • przez KopalniaWiedzy.pl
      Zespół prof. Stuarta Lindsaya z Arizona State University opracował technologię, która może okazać się przełomowym rozwiązaniem w dziedzinie badań genetycznych. Wynalazek opracowany przez badaczy z Arizony pozwala na sekwencjonowanie DNA na podstawie pomiaru właściwości elektrycznych zasad azotowych kodujących informację genetyczną.
      Technologia zaproponowana i przetestowana przez zespół prof. Lindsaya opiera się na wykorzystaniu mikroskopii sił atomowych. Metoda ta pozwala na identyfikację cząsteczek (lub, tak jak w przypadku np. DNA, ich podjednostek) na podstawie pomiaru siły, z jaką elektrony krążące wokół tej cząsteczki (podjednostki) odpychają elektrodę mikroskopu. 
      Prawdopodobnie największym osiągnięciem badaczy z Arizony jest opracowanie specjalnej powłoki, zdolnej do wymuszania odpowiedniej orientacji przestrzennej na zasadach azotowych (jednostkach kodujących informację genetyczną, ułożonych jedna za drugą wzdłuż nici DNA). Dzięki pokryciu tym materiałem elektrod mikroskopu uczonym udało się ograniczyć liczbę fałszywych sygnałów mogących zaburzyć pomiar.
      Sekwencjonowanie nici DNA z wykorzystaniem nowej metody wymaga przeciągnięcia jej przez wnętrze superwąskiego (2,5 nm szerokości) otworu w sposób przypominający nawlekanie nici na igłę. Każda z zasad azotowych przesuwająca się pomiędzy elektrodami jest wówczas wychwytywana przez nową powłokę, a następnie wykonywany jest pomiar ładunku należących do niej elektronów. Dzięki porównaniu uzyskanych w ten sposób danych z bazą tzw. sygnatur elektronowych aparat przypisuje następnie każdy z pozyskanych sygnałów do jednej z zasad azotowych.
      Opracowanie metody szybkiego i taniego sekwencjonowania DNA jest uznawane za jedno z największych wyzwań współczesnej biologii i medycyny. Technologia zaproponowana przez zespół prof. Lindsaya nie jest jedyną próbą realizacji tego celu - o kilku innych pisaliśmy już w KopalniWiedzy. Z pewnością warto jednak śledzić jej losy, gdyż już niedługo właśnie ona może stać się kamieniem milowym w dziedzinie nowoczesnej diagnostyki.
    • przez KopalniaWiedzy.pl
      Naukowcy z IBM-a wykonali fotografie pojedynczej molekuły w niespotykanej dotychczas rozdzielczości. Udało się to dzięki wykorzystaniu techniki bezkontaktowej mikroskopii sił atomowych.
      Uczeni użyli mikroskopu pracującego w próżni w temperaturze -268 stopni Celsjusza. Wykonali zdjęcia pojedynczej molekuły pentacenu. Po raz pierwszy w historii udało się zobaczyć pojedyncze atomy w molekule. Dotychczas były one zasłaniane przez chmurę elektronów.
      Molekuła pentacenu składa się z 22 atomów węgla i 14 atomów wodoru. Jej długość wynosi zaledwie 1,4 nanometra, a odległości pomiędzy sąsiednimi atomami węgla to 0,14 nm. To milion razy mniej niż wynosi średnica ziarna piasku.
      Tak dokładne obrazowanie było możliwe dzięki uzyskaniu niezwykle małej odległości pomiędzy molekułą a ostrzem mikroskopu. Zwykle w technice bezkontaktowej ostrze znajduje się w odległości 10-100 nanometrów od badanego przedmiotu. W takiej odległości urządzenie nie zarejestrowałoby jednak wystarczająco dobrego obrazu.

      Dlatego też naukowcy z IBM-a postanowili zbliżyć ostrze na znacznie mniejszą odległość. Problem jednak w tym, że wskutek oddziaływania z atomami mogło ono zostać odepchnięte lub też molekuła mogła się doń przyczepić. W obu przypadkach uzyskanie odpowiedniego obrazu nie byłoby możliwe.
      Specjaliści odpowiednio przygotowali ostrze, najpierw umieszczając na nim molekułę tlenku węgla. Dzięki temu, próbując różnych odległości, udało im się uzyskać najlepszy obraz w chwili, gdy ostrze znajdowało się zaledwie 0,5 nanometra nad molekułą.
      Aby uzyskać pełną trójwymiarową mapę sił atomowych, mikroskop musiał być niezwykle stabilny zarówno mechanicznie jak i termicznie, co gwarantuje, że zarówno czubek ostrza jak i molekuła pozostaną niezmienione przez 20 godzin, w czasie których zbierane były dane - mówi Fabian Mohn, doktorant z IBM Research z Zurichu.
       
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...