Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Jak twierdzi doktor Hector J. De Los Santos z kalifornijskiego NanoMEMS Research, komputery przyszłości mogą pracować nie dzięki przepływowi elektronów, a fal poruszających się w "cieczy elektronowej". To rozwiązałoby problem z dochowaniem wierności Prawu Moore'a.

Obowiązujące od ponad 40 lat prawo przewiduje, że co 18 miesięcy liczba tranzystorów w układzie zwiększa się dwukrotnie. Obecnie już wiadomo, że wykorzystując współczesną technologię CMOS za kilka lat będziemy mieli poważne problemy z zachowaniem Prawa Moore'a.

Dlatego też De Los Santos opracował koncepcję nazwaną nano-electron-fluidic logic (NFL), która zakłada wykorzystanie przepływu plazmonów w podobnym cieczy gazie elektronów. Uczony przewiduje, że takie rozwiązanie pozwoli na przełączanie bramek w ciągu femtosekund przy rozpraszaniu energii mniejszym niż femtodżul.

Naukowiec wyjaśnia, że jego teoria korzysta z właściwości fali plazmonów powierzchniowych (SPW). Poruszają się one wzdłuż powierzchni styku dwóch materiałów, których stałe dielektryczne mają przeciwne znaki. Mogą więc poruszać się w układzie scalonym zbudowanym z materiałów o różnych właściwościach. Koncepcja De Los Santosa zakłada uruchomienie jednak SPW, a zaraz później innej SPW, która znajdzie się na kolizyjnym kursie do pierwszej fali. Po kolizji fale rozproszą się w jednym z dwóch możliwych kierunków. Ich obecność będzie interpretowana jako "1", ich brak jako "0".

Proces obliczeniowy rozpoczyna się zatem od SPW1 poruszającej się w elektronowym gazie wzdłuż kanału, który na końcu się rozdwaja. Obie jego odnogi są wyposażone w odpowiednie czujniki. Z obu boków do kanału, jeszcze przed miejscem, w którym się on rozdwaja, dochodzą dwa dodatkowe kanały. Każdym z nich możemy puścić dodatkową SPW2, która zderzy się z SPW1. Gdy np. puścimy ją z prawej strony to SPW1 trafi do lewego rozgałęzienia, gdzie jej obecność zostanie uznana za "1".

Koncepcja De Los Santosa nie wykorzystuje zatem, jak ma to miejsce w technologii CMOS, przepływu cząstek, ale przepływ fali.  Cząstki, podobnie jak wtedy, gdy wrzucimy kamień do wody, pozostają w tym samym miejscu, poruszając się tylko w górę i w dół. Tym samym rozprzestrzenianie się fali zakłócenia nie wymaga przenoszenia masy. Dzięki temu przesuwają się szybciej niż elektrony - mówi De Los Santos.

W technologii CMOS poruszające się elektrony wchodzą w interakcje z zanieczyszczeniami w materiale, z którego zbudowany jest układ scalony i z samym materiałem, co ogranicza ich prędkość oraz zwiększa wydzielanie ciepła. NFL jest pozbawiona tych wad.

Kluczem do sukcesu NFL jest zoptymalizowanie odpowiedniej "gęstości" układu scalonego. SPW z czasem zanikają, a więc odległość, którą mają przebyć musi być tak dobrana, by fala dotarła do wyznaczonego celu. W przeciwnym razie zaniknie i nie dojdzie do wykonania żadnej operacji logicznej. Odległość nie może być też zbyt mała, gdyż fala dotrze do celu, odbije się, powróci do punktu wyjścia i ponownie się odbije wywołując rezonans w wykrywających ją czujnikach. Należy więc dobrać taki rozmiar kanałów, którymi będą poruszały się SPW, by fala nie zaniknęła przed ich końcem i by po odbiciu się nie dotarła do punktu wyjścia.

De Los Santos przewiduje, że największa gęstość urządzenia będzie równa wielkości najmniejszego możliwego plazmonu, którym jest układ dwóch różnoimiennych ładunków (dipol). Jako że najmniejszym dipolem jest atom, oznacza to, że NFL może teoretycznie wykonywać działania logiczne na powierzchni czterokrotnie mniejszej niż CMOS.

Kolejną zaletą wykorzystania fali plazmonów powierzchniowych jest ich olbrzymia prędkość wynosząca miliard centymetrów na sekundę. To oznacza, że układy scalone wykorzystujące SPW mogłyby pracować w temperaturze pokojowej z prędkością nawet 6 THz. Co więcej, operacje odbywałyby się przy zużyciu minimalnej ilości energii. Do wzbudzenia SPW wystarczy bowiem prąd stały o natężeniu większym od zera. Podtrzymanie istnienia elektronowego gazu wymaga użycia tak małych ilości energii, że są to wartości pomijalne. Innymi słowy, do pracy układu wykorzystującego NFL wystarczy minimalna wykrywalna ilość energii.

Jakby tego jeszcze było mało, koncepcja NFL jest kompatybilna z obecnie używanymi procesami litograficznymi. Do produkcji nowego typu układów można wykorzystać zatem już istniejące urządzenia i można łączyć NFL z CMOS.

Share this post


Link to post
Share on other sites

Rzeczywiście bardzo ciekawa koncepcja na konstrukcję procesorów przyszłości. Ja mam tylko nadzieję, że wraz z wprowadzeniem procesorów przyszłości zmieni się architektura obecnych procesorów (mam na myśli przejście z CISC na RISC, np. na ARM)

 

Co ciekawe dzięki temu zostanie zaoszczędzone mnóstwo energii. Problemem może być jedynie samo wytworzenie tego typu elementów i działanie czujników. Poza tym nie uwierzę, że ten "tranzystor" mógłby być 4-ro krotnie mniejszy od obecnych wytwarzanych w CMOS, skoro musi być tam zupełnie inna konstrukcja - rozgałęziający się tunelik, na początku coś inicjującego przepływ SPW, a na końcach rozgałęzień - odpowiednie czujniki wraz z tłumikami fali. Mimo wszystko bardzo podoba mi się takie spojrzenie.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      IBM pokaże dzisiaj prototypowy optyczny układ scalony „Holey Optochip“. To pierwszy równoległy optyczny nadajnik-odbiornik pracujący z prędkością terabita na sekundę. Urządzenie działa zatem ośmiokrotnie szybciej niż inne tego typu kości. Układ pozwala na tak szybki transfer danych, że mógłby obsłużyć jednocześnie 100 000 typowych użytkowników internetu. Za jego pomocą można by w ciągu około godziny przesłać zawartość Biblioteki Kongresu USA, największej biblioteki świata.
      Holey Optochip powstał dzięki wywierceniu 48 otworów w standardowym układzie CMOS. Dało to dostęp do 24 optycznych nadajników i 24 optycznych odbiorników. Przy tworzeniu kości zwrócono też uwagę na pobór mocy. Jest on jednym z najbardziej energooszczędnych układów pod względem ilości energii potrzebnej do przesłania jednego bita informacji. Holey Optochip potrzebuje do pracy zaledwie 5 watów.
      Cały układ mierzy zaledwie 5,2x5,8 mm. Odbiornikami sygnału są fotodiody, a nadajnikami standardowe lasery półprzewodnikowe VCSEL pracujące emitujące światło o długości fali 850 nm.
    • By KopalniaWiedzy.pl
      O grafenie piszemy od lat, a przed kilkunastoma miesiącami informowaliśmy o powstaniu grafanu. Teraz do rodziny dołączył trzeci jej członek - grafyn.
      Symulacje komputerowe przeprowadzone przez niemieckich uczonych wskazują na możliwość istnienia pojedynczej warstwy atomów węgla, które jednak nie muszą być ułożone w kształcie sześciokąta, a mogą przyjmować bardzo różne formy. Nowy materiał może być zatem znacznie bardziej elastyczny niż grafen.
      Jak pamiętamy, energia elektronów poruszających się w grafenie jest wprost proporcjonalna do momentu pędu. Gdy energie takich elektronów przedstawimy na trójwymiarowym wykresie otrzymamy stożek Diraca. Te unikatowe właściwości grafenu powodują, że elektrony zachowują się w nim tak, jakby nie miały masy, co pozwala im na poruszanie się z niezwykle dużą prędkością, a to może być bardzo pożądaną cechą np. w elektronice.
      Grafyn tym różni się od grafenu, który ma pojedyncze lub podwójne wiązania, iż tworzy podwójne i potrójne wiązania, a atomy węgla nie układają się heksagonalnie.
      Niemieccy uczeni, wśród nich chemik Andreas Görling z Uniwersytetu Erlangen-Nuremberg, prowadzili komputerowe symulacje trzech różnych wzorców, w jakie mogą układać się atomy węgla w grafynie i odkryli, że we wszystkich mamy do czynienia ze stożkiem Diraca. Jednak, co ważniejsze, okazało się, że jeden z badanych wzorów 6,6,12 grafyn, w którym atomy węgla charakteryzuje prostokątna symetria, przewodzi elektrony tylko w jednym kierunku. Taki materiał nie potrzebowałby domieszkowania innymi pierwiastkami, by wykazywać właściwości pożądane w elektronice.
      W przeszłości uzyskiwano już niewielkie skrawki grafynu. Teraz niemieckie badania dowiodły, że warto pracować nad tym materiałem i różnymi jego odmianami.
    • By KopalniaWiedzy.pl
      Podczas odbywającego się właśnie dorocznego spotkania Amerykańskiego Towarzystwa Fizycznego specjaliści z IBM-a poinformowali o dokonaniu trzech przełomowych kroków, dzięki którym zbudowanie komputera kwantowego stanie się możliwe jeszcze za naszego życia.
      Jednym z najważniejszych wyzwań stojących przed ekspertami zajmującymi się kwantowymi komputerami jest dekoherencja. To wywołana oddziaływaniem czynników zewnętrznych utrata właściwości kwantowych przez kubity - kwantowe bity. Koherencja wprowadza błędy do obliczeń kwantowych. Jednak jeśli udałoby się utrzymać kwantowe bity przez wystarczająco długi czas można by przeprowadzić korektę błędów.
      Eksperci z IBM-a eksperymentowali ostatnio z „trójwymiarowymi“ nadprzewodzącymi kubitami, które zostały opracowane na Yale University. Ich prace pozwoliły na dokonanie przełomu. Udało się im utrzymać stan kwantowy kubitu przez 100 mikrosekund. To 2 do 4 razy więcej niż poprzednie rekordy. A co najważniejsze, to na tyle długo by przeprowadzić korekcję błędów na kubitach 3D.
      Drugi z przełomowych kroków to powstrzymanie dekoherencji zwykłego „dwuwymiarowego“ kubitu przez 10 mikrosekund. W przypadku takich kubitów wystarczy to do przeprowadzenia korekcji błędów.
      Utrzymanie przez tak długi czas kubitu pozwoliło na dokonanie trzeciego z przełomów. Udało się bowiem przeprowadzić na dwóch kubitach operację CNOT (controlled-NOT) z dokładnością 95-98 procent. To niezwykle ważne osiągnięcie, gdyż bramka CNOT w połączeniu z prostszymi bramkami kubitowymi może być skonfigurowana do przeprowadzenia dowolnej operacji logicznej.
      Od połowy 2009 roku IBM udoskonalił wiele technik związanych z komputerami kwantowymi. Najprzeróżniejsze aspekty związane z takimi maszynami udoskonalono od 100 do 1000 razy. W sumie wszystkie te techniki są bardzo bliskie spełnienia minimalnych wymagań stawianych przed praktycznym komputerem kwantowym.
    • By KopalniaWiedzy.pl
      Inżynierowie z Brown University zaprojektowali urządzenie, które pozwala mierzyć poziom glukozy w ślinie, a nie krwi. W artykule opublikowanym na łamach Nano Letter Amerykanie ujawnili, że w biochipie wykorzystano interferometry plazmoniczne.
      Zaprezentowane rozwiązanie powstało "na styku" dwóch dziedzin: nanotechnologii i plazmoniki, czyli nauki o własnościach i zastosowaniach powierzchniowych fal plazmonowo-polarytonowych. Na biochipie wielkości paznokcia specjaliści z Brown University wytrawili tysiące interferometrów plazmonicznych. Potem mierzyli stężenie glukozy w roztworze przepływającym po urządzeniu. Okazało się, że odpowiednio zaprojektowany biochip wykrywa stężenia glukozy występujące w ludzkiej ślinie. Zazwyczaj poziom cukru w ślinie jest ok. 100-krotnie niższy niż we krwi.
      W ten sposób zweryfikowaliśmy koncepcję, że [bazujące na interakcjach elektronów i fotonów] interferometry plazmoniczne można wykorzystać do wykrywania niewielkich stężeń cząsteczek - podkreśla prof. Domenico Pacifici, dodając, że równie dobrze jak glukoza, mogą to być inne substancje, np. zanieczyszczenia środowiskowe czy wąglik. W dodatku da się je wykrywać wszystkie naraz na tym samym chipie.
      Konstruując czujnik, naukowcy zrobili nacięcie o szerokości ok. 100 nanometrów. Potem z obu jego stron wycięli rowki o grubości 200 nanometrów. Wycięcie wychwytuje zbliżające się fotony, a rowki je rozpraszają, przez co dochodzi do interakcji z wolnymi elektronami, odbijającymi się od metalowej powierzchni chipa. Interakcje wolne elektrony-fotony prowadzą do powstania plazmonów powierzchniowych - tworzy się fala o długości mniejszej od fotonu w wolnej przestrzeni (free space). Dwie fale przemieszczają się wzdłuż powierzchni chipa, aż napotkają fotony w nacięciu. Zachodzi interferencja, a obecność mierzonej substancji (tutaj glukozy) na czujniku prowadzi do zmiany względnej różnicy faz, co z kolei powoduje mierzone w czasie rzeczywistym zmiany w intensywności światła transmitowanego przez środkowe wycięcie. Środkowe nacięcie działa jak mikser [...] dla fal plazmonów powierzchniowych i światła.
      Akademicy nauczyli się, że mogą manipulować przesunięciem fazy, zmieniając odległości między wycięciem a rowkami po bokach. W ten sposób można wykalibrować interferometr wykrywający bardzo niskie stężenia glukozy rzędu 0,36 mg na decylitr.
    • By KopalniaWiedzy.pl
      Według niepotwierdzonych informacji Microsoft zlecił IBM-owi i Globalfoundries produkcję układów scalonych dla następcy Xboksa 360. Podobno koncern z Redmond zamówił wykonanie około dziesięciu tysięcy 300-milimetrowych plastrów krzemowych z układami o nazwie kodowej Oban. Kości mają trafić do twórców oprogramowania, którzy będą pisali gry na konsolę.
      Podobno Oban zawiera procesor PowerPC i rdzeń graficzny Radeon HD bazujący na architekturze GCN (graphics core next).
      Wcześniejsze pogłoski mówiły, że Xbox Next będzie korzystał z układu system-on-chip opartego na architekturze ARM zawierającego wiele dedykowanych rdzeni odpowiedzialnych za grafikę, sztuczną inteligencję, dźwięk, szyfrowanie i inne funkcje. Przyszła konsola Microsoft ma podobno wykorzystywać system operacyjny zbudowany wokół jądra Windows 9. Ma być ona też mniejsza i tańsza w produkcji niż Xbox 360.
      Żadna z wymienionych firm nie chciała skomentować tych doniesień.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...