Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Od pewnego czasu fizycy spekulują, że koncepcja zamkniętej pętli czasu (CTC - closed timeline curve) mogłaby przyczynić się do stworzenia komputerów wykorzystujących idealne stany kwantowe, a nawet spowodować powstanie standardowych maszyn, które, po wyposażeniu ich w CTC, byłyby tak samo wydajne, jak komputery kwantowe.

Mowa tutaj o koncepcji, która zakłada, że komputer z dostępem do zamkniętej pętli czasu (a więc takiej, która wraca do swojego początku) mógłby wysłać rezultaty obliczeń do swojej przeszłości. Tym samym bardzo szybko po wprowadzeniu danych otrzymalibyśmy wynik.

Najnowsze badania, przeprowadzone przez naukowców z IBM-a i University of Waterloo wskazują jednak, że jeśli nawet CTC istnieją, to nie przyczynią się do tak znacznego wzrostu mocy obliczeniowej jak sądzono.

Uczeni wyjaśniają, że specjaliści rozważający przydatność zamkniętych pętli czasu wpadli w "pułapkę linearności". Koncepcja CTC zakłada bowiem, że zmiany kwantowe są nielinearne, podczas gdy kwantowe systemy mechaniczne ewoluują w sposób linearny. Zdaniem Charlesa Bennetta, Graeme Smitha, Johna Smolina i Debbie Leung korzyści, które miały przynieść CTC, wynikały z tego, że analizowano ewolucję poszczególnych czystych stanów kwantowych i linearnie rozciągano wnioski tak, by określić ewolucję stanów mieszanych. To właśnie nazywa się "pułapką linearności", gdy teorie nielinearne rozważa się w sposób linearny. Zdaniem wymienionych naukowców, zastosowanie CTC w obliczeniach spowoduje, że dane wyjściowe nie będą skorelowane z danymi wejściowymi, przez co nie będą zbyt użyteczne przy obliczeniach.

Problem z wcześniejszymi teoriami polega na tym, że nie brały one pod uwagę fizycznych procesów wyboru danych wejściowych na potrzeby obliczeń. W teorii nielinearnej dane na wyjściu nie zależą tylko od danych wejściowych ale również od sposobu ich wyboru - mówi Smith.

Scott Aaronson z MIT-u, który też zajmował się możliwymi zaletami wykorzystania CTC w obliczeniach, nie zgadza się z takim postawieniem sprawy. Mówi, że brał pod uwagę problemy nieliniowością systemu, ale nie uważa, by odgrywały aż tak dużą rolę, jak chcą tego Bennett i jego koledzy. Prawdziwy powód niezgody jest następujący: w znanym nam wszechświecie CTC niemal na pewno nie istnieją. A więc zadając pytanie o prawidłowy model komputerowy je wykorzystujący, tak naprawdę zadajemy dziwaczne i źle zdefiniowane pytanie - stwierdza Aaronson.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pierwszy raz słyszę o CTC i źle mi się czyta tekst, który odnosi się do jakichś wcześniejszych doniesień, kiedy nie bardzo wiem, o co chodzi (a nie jest wyjaśnione nawet krótko).

Na KW chyba o tym nie było? Pobieżne guglanie w ogóle nie pokazało mi nic na ten temat po polsku.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Szczerze to dla kwantowych komputerów zwykła pętla przestrzenna powinna wystarczyć żeby mogły błyskawicznie rozwiązywać problemy NP-zupełne.

Jeśli natomiast mamy do dyspozycji pętle czasowe, to klasyczny komputer już na to pozwoli:

1) wylosuj wybór używając 'idealnego generatora liczb losowych' - np. mierząc polaryzację światła 45deg od oczekiwanej

2) jeśli dostaniesz z przyszłości wiadomość że to był zły wybór, weź inny (np. następny)

3) dokonaj wyboru i poczekaj na rezultat

4) jeśli rezultat cię nie satysfakcjonuje, do 2) prześlij informację żeby go zmienić.

Gdzie wyborem może być klucz kryptograficzny, dane do problemu NP czy np. sekwencja nukleotydów...

Fizyka powinna ustabilizować tą pętlę czasową, powodując że wylosowaliśmy wybór który nas usatysfakcjonuje, ewentualnie skłamie podczas przesyłania informacji wstecz w czasie.

Takie kanały informacyjne nie mogą być całkiem stabilne - pozwoliłoby to na paradoksy - umożliwianie ich w OTW jest dla mnie jednym z argumentów przeciwko tej teorii.

http://groups.google.com/group/sci.philosophy.tech/browse_thread/thread/56a0e13619778c45

 

Pytanie czy takie przesyłanie informacji wstecz w czasie jest fizycznie możliwe. Jest to bliskie pytaniu o determinizm - czyli coś bez czego aż trudno sobie fizykę wyobrazić. Sporo jest argumentów za, jak np. niezmienniczość CPT, eksperyment Wheelera, to że w OTW czas jest wybierany lokalnie... Jednak tzw. nierówności Bella w mechanice kwantowej spowodowały że determinizm jest dziś dość niepopularnym poglądem.

Napisałem ostatnio pracę w której przekonuję że jak zrozumiemy co to znaczy żyć w czterech wymiarach - że czas nie jest tylko parametrem ewolucji, ale np. cząstki powinny być wyobrażane jako ich trajektorie w czasoprzestrzeni - mechanika kwantowa powstaje naturalnie. Już najprostszy model - rozkład Bolzmana wśród ich trajektorii daje podobną statystykę.

http://arxiv.org/abs/0910.2724

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
      Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
      Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
      Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
      Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
      Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
      Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
      Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
      Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
      Więcej o unimonie można przeczytać na łamach Nature Communications.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą zrewolucjonizować wiele dziedzin nauki oraz przemysłu, przez co wpłyną na nasze życie. Rodzi się jednak pytanie, jak duże muszą być, by rzeczywiście dokonać zapowiadanego przełomu. Innymi słowy, na ilu kubitach muszą operować, by ich moc obliczeniowa miała znaczący wpływ na rozwój nauki i technologii.
      Na pytanie to postanowili odpowiedzieć naukowcy z Wielkiej Brytanii i Holandii. Przyjrzeli się dwóm różnym typom problemów, jakie będą mogły rozwiązywać komputery kwantowe: złamaniu zabezpieczeń Bitcoina oraz symulowanie pracy kofaktora FeMo (FeMoco), który jest ważnym elementem białka wchodzącego w skład nitrogenazy, enzymu odpowiedzialnego za asymilację azotu.
      Z AVS Quantum Science dowiadujemy się, że naukowcy stworzyli specjalne narzędzie, za pomocą którego mogli określić wielkość komputera kwantowego oraz ilość czasu potrzebnego mu do rozwiązania tego typu problemów. Obecnie większość prac związanych z komputerami kwantowymi skupia się na konkretnych platformach sprzętowych czy podzespołach nadprzewodzących. Różne platformy sprzętowe znacząco się od siebie różnią chociażby pod względem takich kluczowych elementów, jak tempo pracy czy kontrola jakości kubitów, wyjaśnia Mark Webber z University of Sussex.
      Pobieranie azotu z powietrza i wytwarzanie amoniaku na potrzeby produkcji nawozów sztucznych to proces wymagający dużych ilości energii. Jego udoskonalenie wpłynęłoby zarówno na zwiększenie produkcji żywności, jak i zmniejszenie zużycia energii, co miałoby pozytywny wpływ na klimat. Jednak symulowanie odpowiednich molekuł, których opracowanie pozwoliłoby udoskonalić ten proces jest obecnie poza możliwościami najpotężniejszych superkomputerów.
      Większość komputerów kwantowych jest ograniczone faktem, że wykorzystywane w nich kubity mogą wchodzić w bezpośrednie interakcje tylko z kubitami sąsiadującymi. W innych architekturach, gdzie np. są wykorzystywane jony uwięzione w pułapkach, kubity nie znajdują się na z góry ustalonych pozycjach, mogą się przemieszczać i jeden kubit może bezpośrednio oddziaływać na wiele innych. Badaliśmy, jak najlepiej wykorzystać możliwość oddziaływania na odległe kubity po to, by móc rozwiązać problem obliczeniowy w krótszym czasie, wykorzystując przy tym mniej kubitów, wyjaśnia Webber.
      Obecnie największe komputery kwantowe korzystają z 50–100 kubitów, mówi Webber. Naukowcy oszacowali, że do złamania zabezpieczeń sieci Bitcoin w ciągu godziny potrzeba – w zależności od sprawności mechanizmu korekty błędów – od 30 do ponad 300 milionów kubitów. Mniej więcej godzina upływa pomiędzy rozgłoszeniem a integracją blockchaina. To czas, w którym jest on najbardziej podatny na ataki.
      To wskazuje, że Bitcoin jest obecnie odporna na ataki z wykorzystaniem komputerów kwantowych. Jednak uznaje się, że możliwe jest zbudowanie komputerów kwantowych takiej wielkości. Ponadto ich udoskonalenie może spowodować, że zmniejszą się wymagania, co do liczby kubitów potrzebnych do złamania zabezpieczeń Bitcoin.
      Webber zauważa, że postęp na polu komputerów kwantowych jest szybki. Przed czterema laty szacowaliśmy, że do złamania algorytmu RSA komputer kwantowy korzystający z jonów uwięzionych w w pułapce potrzebowałby miliarda fizycznych kubitów, a to oznaczało, że maszyna taka musiałaby zajmować powierzchnię 100 x 100 metrów. Obecnie, dzięki udoskonaleniu różnych aspektów tego typu komputerów, do złamania RSA wystarczyłaby maszyna o rozmiarach 2,5 x 2,5 metra.
      Z kolei do przeprowadzenia symulacji pracy FeMoco komputery kwantowe, w zależności od wykorzystanej architektury i metod korekcji błędów, potrzebowałyby od 7,5 do 600 milionów kubitów, by przeprowadzić taką symulację w ciągu około 10 dni.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy denerwujemy się, że nasz domowy pecet uruchamia się za długo, pewnym pocieszeniem może być informacja, iż w porównaniu z eksperymentalnymi komputerami kwantowymi jest on demonem prędkości. Uczeni pracujący nad tego typu maszynami spędzają każdego dnia wiele godzin na ich odpowiedniej kalibracji.
      Komputery kwantowe, a raczej maszyny, które w przyszłości mają się nimi stać, są niezwykle czułe na wszelkie zewnętrzne zmiany. Wystarczy, że temperatura otoczenia nieco spadnie lub wzrośnie, że minimalnie zmieni się ciśnienie, a maszyna taka nie będzie prawidłowo pracowała. Obecnie fizycy kwantowi muszą każdego dnia sprawdzać, jak w porównaniu z dniem poprzednim zmieniły się warunki. Później dokonują pomiarów i ostrożnie kalibrują układ kwantowy - mówi profesor Frank Wilhelm-Mauch z Uniwersytetu Kraju Saary. Dopuszczalny margines błędu wynosi 0,1%, a do ustawienia jest około 50 różnych parametrów. Kalibracja takiej maszyny jest zatem niezwykle pracochłonnym przedsięwzięciem.
      Wilhelm-Mauch i jeden z jego doktorantów zaczęli zastanawiać się na uproszczeniem tego procesu. Stwierdzili, że niepotrzebnie skupiają się na badaniu zmian w środowisku. Istotny jest jedynie fakt, że proces kalibracji prowadzi do pożądanych wyników. Nie jest ważne, dlaczego tak się dzieje. Uczeni wykorzystali algorytm używany przez inżynierów zajmujących się mechaniką konstrukcji. Dzięki niemu możliwe było zmniejszenie odsetka błędów poniżej dopuszczalnego limitu 0,1% przy jednoczesnym skróceniu czasu kalibracji z 6 godzin do 5 minut. Niemieccy naukowcy nazwali swoją metodologię Ad-HOC (Adaptive Hybrid Optimal Control) i poprosili kolegów z Uniwersytetu Kalifornijskiego w Santa Barbara o jej sprawdzenie. Testy wypadły pomyślnie.
      W przeciwieństwie do metod ręcznej kalibracji nasza metoda jest całkowicie zautomatyzowana. Naukowiec musi tylko wcisnąć przycisk jak w zwykłym komputerze. Później może pójść zrobić sobie kawę, a maszyna kwantowa sama się wystartuje - mówi Wilhelm-Mauch.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Współczesne komputery kwantowe to bardzo skomplikowane urządzenia, które trudno jest budować, skalować, a do pracy wymagają niezwykle niskich temperatur. Dlatego naukowcy od dłuższego czasu interesują się optycznymi komputerami kwantowymi. Fotony łatwo przenoszą informację, a fotoniczny komputer kwantowy mógłby pracować w temperaturze pokojowej. Problem jednak w tym, że o ile wiadomo, jak budować pojedyncze kwantowe bramki logiczne dla fotonów, to olbrzymim wyzwaniem jest stworzenie dużej liczby bramek i połączenie ich tak, by możliwe było przeprowadzanie złożonych obliczeń.
      Jednak optyczny komputer kwantowy może mieć prostszą architekturę, przekonują na łamach Optics naukowcy z Uniwersytetu Stanforda. Proponują oni wykorzystanie lasera do manipulowania pojedynczym atomem, który z kolei – za pomocą zjawiska teleportacji kwantowej – zmieni stan fotonu. Atom taki może być resetowany i wykorzystywany w wielu bramkach kwantowych, dzięki czemu nie ma potrzeby budowania różnych fizycznych bramek, co z kolei znakomicie uprości architekturę komputera kwantowego.
      Jeśli chciałbyś zbudować komputer kwantowy tego typu, musiałbyś stworzyć tysiące kwantowych źródeł emisji, spowodować, by były nie do odróżnienia od siebie i zintegrować je w wielki obwód fotoniczny. Tymczasem nasza architektura zakłada wykorzystanie niewielkiej liczby dość prostych podzespołów, a wielkość naszej maszyny nie rośnie wraz z wielkością programu kwantowego, który jest na niej uruchamiany, wyjaśnia doktorant Ben Bartlett, główny autor artykułu opisującego prace fizyków ze Stanforda.
      Nowatorska architektura składa się z dwóch głównych elementów. Pierścień przechowujący dane to po prostu pętla ze światłowodu, w której krążą fotony. Pełni on rolę układu pamięci, a każdy foton reprezentuje kubit. Badacze mogą manipulować fotonem kierując go z pierścienia do jednostki rozpraszania. Składa się ona z wnęki optycznej, w której znajduje się pojedynczy atom. Foton wchodzi w interakcję z atomem i dochodzi do ich splątania. Następnie foton wraca do pierścienia, a laser zmienia stan atomu. Jako, że jest on splątany z fotonem, zmiana stanu atomu skutkuje też zmianą stanu fotonu. Poprzez pomiar stanu atomu możesz badać stan fotonu. W ten sposób potrzebujemy tylko 1 atomowego kubitu, za pomocą którego manipulujemy wszystkimi fotonicznymi kubitami, dodaje Bartlett.
      Jako że każda kwantowa bramka logiczna może zostać skompilowana w szereg operacji przeprowadzonych na atomie, teoretycznie można by w ten sposób uruchomić dowolny program kwantowy dysponując jednym atomowym kubitem. Działanie takiego programu polegałoby na całym ciągu operacji, w wyniku których fotony wchodziłyby w interakcje z atomowym kubitem.
      W wielu fotonicznych komputerach kwantowych bramki są fizycznymi urządzeniami, przez które przechodzą fotony, zatem jeśli chcesz zmienić sposób działania swojego programu zwykle musisz zmienić konfigurację sprzętową komputera. W przypadku naszej architektury nie musisz zmieniać sprzętu. Wystarczy, że wyślesz do maszyny inny zestaw instrukcji, stwierdza Bartlett.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...