Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Aminokwas z kosmosu
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Komety to jedna z najstarszych obiektów w Układzie Słonecznym. Te lodowe pozostałości po formowaniu się planet zostały wyrzucone przez grawitację na obrzeża Układu Słonecznego. Ich rezerwuarem jest Obłok Oorta, hipotetyczny obłok materiału znajdującego się w odległości od kilku tysięcy do 100 000 jednostek astronomicznych od Słońca.
Tym, co najbardziej przyciąga naszą uwagę w kometach jest ich spektakularny warkocz ciągnący się na wiele milionów kilometrów. Jego źródłem jest jądro komety, składające się z lodu, pyłu i okruchów skalnych. Jądra większości znanych komet liczą kilka lub kilkanaście kilometrów średnicy. Teleskop Hubble'a odkrył właśnie prawdziwego giganta wśród jąder komet – olbrzyma o średnicy około 140 kilometrów.
Cometa C/2014 UN271 (Bernardinelli-Bernstein) została odkryta przez Pedro Bernardinellego i Gary'ego Bernsteina w archiwalnych zdjęciach z Dark Energy Survey w Cerro Tololo Inter-American Observatory w Chile. Po raz pierwszy zaobserwowano ją w 2010 roku. A w bieżącym roku naukowcy wykorzystali Teleskop Hubble'a oraz radioteleskopy, by odróżnić jej stałe jądro od otaczającej je chmury pyłu. Okazało się, że mają do czynienia z największym znanym jądrem komety. Obecnie C/2014 UN271znajduje się w odległości mniejszej niż 3,2 miliarda kilometrów od Słońca, a za klika milionów lat ponownie trafi do Obłoku Oorta.
Aby uświadomić sobie, z jakim gigantem mamy do czynienia, musimy wiedzieć, że średnica jądra C/2014 UN271 jest około 50-krotnie większa niż średnica typowej komety. Słynna kometa Halleya ma jądro o średnicy 11 kilometrów, zaś jądro komety Hale-Boppa ma 74 km średnicy. Dotychczasową rekordzistką była kometa C/2002 z jądrem o średnicy 96 kilometrów. Teraz zaś mówimy o 140-kilometrowym jądrze.
Profesor David Jewitt Uniwersytetu Kalifornijskiego w Los Angeles, współautor badań nad C/2014 UN271 mówi, że ta kometa to wierzchołek góry lodowej olbrzymiego zbioru tysięcy komet znajdujących się w odległych obszarach Układu Słonecznego, które odbijają zbyt mało światła, byśmy mogli je dostrzec. Zawsze podejrzewaliśmy, że ta kometa ma wielkie jądro, gdyż widzimy ją tak jasną z tak dużej odległości. Teraz mamy potwierdzenie.
"To niezwykły obiekt, biorąc pod uwagę fakt, jak bardzo jest aktywny w tak dużej odległości od Słońca. Domyślaliśmy się, że jądro może być całkiem duże, ale musieliśmy to potwierdzić, dodaje główny autor artykułu naukowego, Man-To Hui z Uniwersytetu Nauki i Technologii w Taipa w Macau. Naukowcy wykorzystali więc pięć zdjęć wykonanych w styczniu bieżącego roku przez Hubble'a.
Głównym problemem było odróżnienie jądra od otaczającego go gazu i pyłu. Kometa jest obecnie zbyt daleko od Ziemi, by można było ten problem rozwiązać wizualnie. Jednak w danych z Hubble'a widać pojaśnienia w miejscu, gdzie znajduje się jądro. Hui i jego zespół stworzyli komputerowy model warkocza komety, który pasował do obrazów z Hubble'a. Następnie poświatę z warkocza odjęto od całości, pozostawiając samo tylko światło odbijane przez jądro.
Uzyskane w ten sposób wyniki porównano z wcześniejszymi pomiarami dokonanymi za pomocą radioteleskopu ALMA (Atacama Large Millimeter/submilimeter Array). Wszystkie te dane łącznie pozwoliły na określenie średnicy jądra i jego współczynnika odbicia. Okazało się, że dane z Hubble'a odnośnie wielkości jądra komety są zgodne z wcześniejszymi danymi z ALMA, jednak jądro jest ciemniejsze niż sądzono. Jest wielkie i ciemniejsze od węgla, mówi Jewitt.
Kometa C/2014 UN271 od ponad miliona lat podąża w kierunku Słońca. Pochodzi prawdopodobnie z Obłoku Oorta, ale – podobnie jak inne komety – nie narodziła się w nim, ale została tam wypchnięta przez oddziaływania grawitacyjne olbrzymich planet w czasach, gdy orbity Jowisza i Saturna wciąż ewoluowały.
Kometa Bernardinelli-Bernstein znajduje się na eliptycznej orbicie, a jej podróż wokół Słońca trwa około 3 milionów lat. Obecnie znajduje się w odległości około 3 godzin świetlnych od Słońca, a w najdalszym punkcie orbity od naszej gwiazdy dzieli ją około pół roku świetlnego.
Obłok Oorta to hipotetyczna struktura, której istnienie jako pierwszy postulował holenderski astronom Jan Oort. Masa Obłoku może sięgać nawet 20-krotności masy Ziemi. Jednak samego obłoku nie możemy zaobserwować, gdyż tworzący go materiał, w tym olbrzymia liczba komet, jest zbyt słabo widoczny, byśmy mogli go bezpośrednio obserwować. Jeśli Obłok istnieje, to jest największą strukturą w Układzie Słonecznym i jest – przynajmniej przy obecnym stanie techniki – całkowicie dla nas niewidzialny.
Wiemy jednak, że komety przybywają do wewnętrznych obszarów Układu Słonecznego z każdej strony, a to sugeruje, że Obłok Oorta ma kształt sfery. Jeśli on rzeczywiście istnieje, to sondy Voyager mogą do niego dotrzeć za około 300 lat, a kolejnych 30 000 lat zajmie im przelot przez Obłok.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Prekolumbijska kultura Hopewell była szeroko rozpowszechniona na wschodzie dzisiejszych USA. Pojawiła się ok. 100 r. p.n.e. i zniknęła ok. 500 roku n.e. Naukowcy z University of Cincinnati znaleźli dowody wskazujące, że do jej upadku mogła przyczynić się kometa, która zniszczyła wioski i otaczające je lasy. Byłby to więc drugi znany przypadek – po Tall el-Hammam, identyfikowanym z Sodomą – gdy ludzkie osady zostały zniszczone w wyniku katastrofy kosmicznej.
Uczeni z Cincinnati informują na łamach Nature, że na położonych wzdłuż doliny rzeki Ohio 11 stanowiskach archeologicznych kultury Hopewell, znajdujących się w 3 stanach, odkryli dowody na liczne eksplozje w atmosferze. Znaleziono bowiem mikrosferule bogate w żelazo i siarkę oraz nietypową koncentrację irydu i platyny. Odkryto też warstwę węgla drzewnego, świadczącą o oddziaływaniu wysokich temperatur. Datowanie radiowęglowa wykazało, że badana warstwa pochodzi z lat 252–383. W okresie tym zostało udokumentowanych 69 komet bliskich ziemi. Naukowcy zauważają też, że po tym okresie w pobliżu miejsc znalezienia nietypowej warstwy zaczęto wznosić konstrukcje ziemne w kształcie komety. Wszystkie te dowody mają wskazywać, że dolina Ohio i istniejące tam wsie zostały zbombardowane materiałem niesionym przez kometę.
Wiemy, że kultura Hopewell przetrwała katastrofę. Mogła się ona jednak przyczynić do jej upadku. Już bowiem około roku 500 dochodzi do zaniknięcia wymiany kulturowej i handlowej, nikt nie wznosi już kopców, nie pojawią się nowe wytwory sztuki.
Stanowiska archeologiczne kultury Hopewell zawierają nietypowo wysoką koncentrację i zróżnicowanie meteorytów w porównaniu do stanowisk innych kultur. Mamy tutaj meteoryty żelazne, kamienne i żelazno–kamienne. Rozkład przestrzenny tych meteorytów, ich kontekst i różny skład był dotychczas wyjaśniany hipotezą o wykorzystywaniu ich w długodystansowej wymianie handlowej. Jest jednak możliwe, że wiele z tych meteorytów pochodzi z pojedynczego wydarzenia. Komety zawierają wiele meteoroidów o zróżnicowanej budowie, czytamy w Nature.
W trakcie badań uczeni stwierdzili, że epicentrum bombardowania materiałem przyniesionym przez kometę znajdowało się w lub w pobliżu stanowiska archeologicznego Turner w hrabstwie Hamilton położonym na południowym zachodzie stanu Ohio. Wydaje się, że materiał spadał w z północnego zachodu na południowy zachód. Co interesujące położone niedaleko kopce, zwane Milford Earthworks, mają taką właśnie orientację.
W miarę oddalania się od stanowiska Turner koncentracja mikrosferuli spada. Znajdujemy je jednak ponad 200 kilometrów dalej na południe, w Indian Fort Mountain. Zdaniem naukowców, mikrosferule te to materiał wzbity w powietrze wskutek oryginalnego bombardowania. Jego rozkład bardziej na linii północ-południe niż oryginalny przebieg uderzenia na linii północny zachód – południowy zachód można wyjaśnić przeważającymi w Ameryce Północnej frontami pogodowymi przechodzącymi z zachodu na wschód. Zdaniem naukowców epicentrum bombardowania objęło około 500 km2, a cały obszar, który ucierpiał w wyniku przelotu komety to około 14 900 km2.
Nie wiemy, czy ktoś wówczas zginął. Jednak po tym wydarzeniu przedstawiciele kultury Hopewell zbierali meteoryty i wykonywali z nich przedmioty, które były później wkładane do grobów zmarłych. W epicentrum wydarzenia zaczęto wznosić kopce w kształcie komety, a symbolika i tradycja ustna Hopewell została odziedziczona przez następców, którzy opowiadają o kosmicznej katastrofie, stwierdzają autorzy badań.
O Lenipinšia, rogatym wężu lecącym po niebie i zrzucającym skały, opowiada lud Myaamia, w języku Szaunisów słowo Tekoomsē odnosi się do komety znanej jako Podniebna Pantera, a Irokezi opowiadają o Dajoji, Podniebnej Panterze, która miała moc niszczenia lasów. W opowieściach Ottawów znajdziemy historię o dniu, w którym słońce spadło na Ziemię, a Huronowe i Wyandoci wspominają czasy, gdy przez niebo przetaczała się czarna chmura, zniszczona strzałą przez Hehnoha.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Pedro Bernardinelli i Gary Bernstein z Univeristy of Pennsylvania odkryli gigantyczną kometę, która zmierza w stronę Słońca. Już w roku 2031 zbliży się ona na najmniejszą odległość od naszej gwiazdy. Kometa Bernardinelli-Bernstein, oficjalnie nazwana C/2014 UN271, została zauważona podczas analizy zdjęć z jednego z najdoskonalszych aparatów wykorzystywanych w astronomii.
Amerykańscy naukowcy analizowali obrazy z lat 2013–2019 wykonane przez 570-megapikselowy Dark Energy Camera (DECam) umieszczony na Victor M. Blanco Telscope w Chile. Urządzenie jest wykorzystywane do monitorowania około 300 milionów galaktyk, a uzyskane dane służą do lepszego zrozumienia ciemnej materii. Uczeni, analizując około 80 000 obrazów, znaleźli na nich ponad 800 obiektów z Układu Słonecznego. Na 32 z nich zauważyli olbrzymią kometę, którą po raz pierwszy widać na zdjęciach z roku 2014.
Opierając się na ilości światła odbijanego przez kometę Bernardinelli-Bernstein, jej odkrywcy stwierdzili, że ma ona średnicę 100–200 kilometrów. To około 10-krotnie więcej niż średnica przeciętnej komety. Masa olbrzyma jest zaś około 1000-krotnie większa niż masa przeciętnej komety. To zaś oznacza, że mamy do czynienia z największą kometą odkrytą w czasach współczesnych oraz z największym znanym nam obiektem pochodzącym z Obłoku Oorta.
Na pierwszym z wykonanych zdjęć kometa znajduje się w odległości około 25 jednostek astronomicznych (j.a.) od Słońca, czyli mniej więcej w takiej odległości jak Neptun. Uczeni oceniają jednak, że swoją podróż rozpoczęła z Obłoku Oorta, znajdującego się około 40 000 j.a. od naszej gwiazdy. Obecnie kometa Bernardinelli-Bernstein znajduje się w odległości 20 j.a. od Słońca. Z ostatnich zdjęć wynika, że jej powierzchnia na tyle się rozgrzała, że pojawił się warkocz. Jego utworzenie się pozwala oficjalnie zakwalifikować obiekt jako kometę.
Pomimo olbrzymich rozmiarów i masy, nie musimy przejmować się obecnością komety. Z wyliczeń jej trajektorii wynika, że podleci ona do Słońca nie bliżej niż na odległość 11 j.a. Dla przypomnienia – jednostka astronomiczna to średnia odległość pomiędzy Ziemią a Słońcem. Bernardinelli-Bernstein nie zbliży się więc do Ziemi bliżej niż Saturn. To na tyle duża odległość, że giganta najprawdopodobniej nie będzie można obserwować gołym okiem.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na University of Bath powstał niezwykle lekki materiał, który może wyciszyć silniki samolotów i znacząco poprawić komfort pasażerów. To najlżejszy ze znanych materiałów izolujących, który może zmniejszyć hałas generowany przez silniki startujących odrzutowców do poziomu zbliżonego do hałasu generowanego przez... suszarkę do włosów.
Metr sześcienny aerożelu z tlenku grafenu i poli(alkoholu winylowego) waży zaledwie 2,1 kilograma, co czyni go najlżejszym kiedykolwiek wyprodukowanym materiałem izolującym. Jego twórcy zapewniają, że może on obniżyć hałas generowany przez silniki samolotu ze 105 do 89 decybeli, zatem do poziomu przeciętnej suszarki do włosów. Jednocześnie niemal nie wpływałby na wagę całego samolotu.
Obecnie naukowcy z Materials and Structures Centre (MAST) na Bath University pracują nad optymalizacją swojego aerożelu. Chcą, by lepiej rozpraszał on ciepło, co zmniejszy zużycie paliwa i poprawi bezpieczeństwo.
"To niezwykle interesujący materiał, który może znaleźć wiele zastosowań. Początkowo w przemyśle lotniczym i kosmicznym, ale potencjalnie również w samochodowym, transporcie morskim czy budownictwie", mówi profesor Michele Meo, który stał na czele zespołu badawczego. "Udało się nam wyprodukować tak lekki materiał dzięki połączeniu ciekłych tlenku grafenu i polimeru, które formowane są tak, by zamknąć wewnątrz bąble powietrza. Możemy porównać tę technikę z ubijaniem bezy. Otrzymujemy ciało stałe, zawierające dużo powietrza".
Twórcy nowego materiału oceniają, że może on trafić na rynek już za 18 miesięcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Superlekkie materiały składające się w ponad 99% z powietrza mogą stać się kluczowymi elementami dostarczającymi energię przyszłym misjom kosmicznym. Materiały te, porowate aerożele węglowe, tworzą elektrody superkondensatora zbudowanego na zlecenie NASA przez Merced nAnomaterials Center for Energy and Sensing, University of California, Santa Cruz (UCSC), University of California, Merced i Lawrence Livermore National Laboratory. Superkondensator przyda się też podczas prac na biegunach, gdyż działa w bardzo niskich temperaturach.
Wiele pojazdów kosmicznych wymaga stosowania wewnętrznego ogrzewania. Łaziki pracujące na Marsie muszą mierzyć się ze średnimi temperaturami rzędu -62 stopnie Celsjusza. W zimie temperatura spada poniże -125 stopni Celsjusza. Dlatego też np. Perseverance wyposażony jest w grzałki, które dbają o to, by nie zamarzł elektrolit w akumulatorach łazika. Jednak grzałki i ich źródła zasilania to kolejne elementy dodające masy łazikowi, przez co rosną koszty i poziom skomplikowania misji.
Rozwiązaniem wielu problemów mogłyby być superkondensatory. To urządzenia, które łączą zalety akumulatorów i kondensatorów. Przede wszystkim są zdolne do przechowywania znacznie większych ilości energii niż kondensatory, chociaż nie są tak dobre w jej przechowywaniu jak akumulatory. Jednak nad akumulatorami mają tę przewagę, że można je ładować i rozładować w ciągu minut. Ponadto wytrzymują miliony cykli ładowanie/rozładowanie, podczas gdy akumulatory potrafią przetrwać jedynie kilka tysięcy takich cykli. W końcu, co ważne, w przeciwieństwie do akumulatorów nie działają dzięki reakcjom chemicznym, a dzięki przechowywaniu ładunków w formie naładowanych jonów umieszczonych na powierzchni elektrod.
Zespół pracujący pod kierunkiem Jennifer Lu z UC Merced i Yata Li z USCS stworzył elektrody do swojego kondensatora za pomocą druku 3D. Atramentem było połączenie celulozowych nanokrysztalów, które dostarczyły węgla, i krzemowych mikrosfer, tworzących podporę dla makroporów. W ten sposób powstał aerożel z porami o średnicy od kilku nanometrów do 500 mikrometrów. Utworzono hierarchiczną strukturę kanałów, które znakomicie zwiększają tempo, w jakim jony z elektrolitu przemieszczają się przez materiał, minimalizując drogę, którą muszą przebyć.
Uzyskany aerożel ma powierzchnię około 1750 m2/g, a stworzona z niego elektroda charakteryzuje się pojemnością elektryczną rzędu 148,6 F/g przy przyłożonym napięciu 5 mV/s. Twórcy elektrody wykazali, że działa ona przy temperaturze nawet -70 stopni Celsjusza, podczas gdy większość komercyjnie dostępnych akumulatorów litowo-jonowych i superkondensatorów przestaje działać w temperaturze -20 do -40 stopni Celsjusza, gdyż dochodzi do zamarznięcia elektrolitu.
Obecnie trwają testy mające na celu dokładne określenie wydajności elektrody przy niskich temperaturach. Prowadzimy testy w warunkach, jakie panują na Księżycu, Marsie i Międzynarodowej Stacji Kosmicznej, mówi Lu.
Szczegóły badań opublikowano na łamach Nano Letters.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.