Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Skuteczna szczepionka na malarię
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Niektórzy ludzie są bardziej atrakcyjni dla komarów niż inni. Grupa amerykańskich naukowców poinformowała właśnie na łamach pisma Cell, co powoduje, że część z nas to istne magnesy przyciągające całe chmary brzęczących krwiopijców. Uczeni przetestowali reakcję komarów na zapach człowieka i zidentyfikowali ludzi wyjątkowo je przyciągających.
Analizy chemiczne wykazały, że skóra osób wysoce atrakcyjnych dla komarów wytwarza więcej kwasów karboksylowych. Gdy naukowcy wyhodowali zmutowane komary, którym brakowało chemicznych koreceptorów Ir8a, Ir25a lub Ir76b zwierzęta miały poważne problemy z wykryciem zapachu człowieka, ale zachowały zdolność do odróżniania ludzi wysoce atrakcyjnych i słabo atrakcyjnych. Wskazuje to na istnienie u komarów jakiegoś dodatkowego redundantnego systemu wykrywania ludzi.
Osoby działające na komary jak magnesy wytwarzały znacząco więcej trzech kwasów karboksylowych – pentadekanowego, heptadekanowego i nonadekanowego – oraz 10 niezidentyfikowanych związków należących do tej samej klasy. Stosunek tych i innych kwasów do siebie różnił się znacząco u ludzi przyciągających komary. To oznacza, że może istnieć więcej niż jedna droga, za pomocą której komary uznają niektórych ludzi za wyjątkowo atrakcyjnych.
Autorzy badań nie identyfikowali związków, które powodowały, że niektórzy ludzie są mniej atrakcyjni dla komarów. Przypominają jednak, że badania sprzed kilkunastu lat wykazały istnienie związków, których większa ilość występuje u ludzi mało atrakcyjnych dla komarów. W tym kontekście zauważają, że skóra jednego z uczestników obecnych badań wydzielała dużo kwasów karboksylowych, ale osoba ta nie przyciągała komarów. Możliwe zatem, że badany wydzielał też jakiś naturalny repelent. Kwestii tej jednak nie badano.
Warto też pamiętać, że z wcześniejszych badań wynika, iż komary reagują na bliźnięta jednojajowe w bardziej podobny sposób niż na bliźnięta dwujajowe, co sugeruje istnienie silnego komponentu genetycznego wpływającego na przyciąganie komarów przez ludzi.
Najnowsze badania są zgodne z wcześniejszymi spostrzeżeniami, z których wynika, że u ludzi i myszy zarażonych malarią dochodzi do zmian chemii zapachu skóry, co przyciąga komary i ułatwia transmisję zarodźca malarii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Stabilne ekosystemy niosą ze sobą wiele korzyści koniecznych do ludzkiego dobrostanu, w tym zachowania zdrowia. Jeśli pozwolimy na masowe zniszczenia w ekosystemach, odbije się to na zdrowiu ludzkiej populacji w sposób, który trudno przewidzieć i kontrolować, mówi profesor Michael Springborn z Uniwersytetu Kalifornijskiego w Davis. Uczony stał na czele grupy badawczej, która wykazała, że wymieranie płazów w Panamie i Kostaryce doprowadziło do wzrostu liczby przypadków malarii wśród ludzi.
W ciągu ostatnich kilkudziesięciu lat z wielu miejsc Ameryki Południowej – i nie tylko, bo problem dotyczy całej Ziemi – zaczęły znikać żaby, salamandry i inne płazy. Poza ekologami mało kto zwrócił na to uwagę. Jednak spadki te miały bezpośredni wpływ na ludzkie zdrowie. Naukowcy poinformowali na łamach Environmental Research Letters, że w szczytowych okresach spadku liczby płazów w Panamie i Kostaryce doszło w tych krajach do wzrostu przypadków malarii o 1 osobę rocznie na 1000. Oba kraje liczą ponad 9 milionów obywateli, a to oznacza, że roczna liczba przypadków malarii zwiększyła się tam o ponad 9000.
Od początku lat 80. do połowy lat 90. w Kostaryce rozprzestrzeniał się śmiertelny dla płazów patogen grzybiczny Batrachochytrium dendrobatidis. W Panamie dziesiątkował zwierzęta jeszcze dłużej. W sumie na całym świecie B. dendrobatidis zabił co najmniej 90 gatunków płazów i przyczynił się do spadków wśród kolejnych 500 gatunków. Wkrótce po szczytach jego rozpowszechnienia Kostaryka i Panama doświadczyły wzrostu liczby przypadków malarii.
Wiadomo, że żaby czy jaszczurki zjadają każdego dnia setki komarzych jajek. Malaria zaś jest przenoszona przez komary. Dlatego też naukowcy postanowili sprawdzić, czy istnieje związek pomiędzy spadkiem liczby płazów, a wzrostem zapadalności na malarię. Od pewnego czasu wiemy, że istnieją złożone związki pomiędzy zdrowiem ekosystemów a zdrowiem ludzi, jednak badanie tych związków jest niezwykle trudne, mówi doktor Joakim Weill z UC Davis.
Uczeni przeanalizowali informacje dotyczące ekologii płazów, dane z opieki zdrowotnej oraz wykorzystali modele ekonomiczne do zbadania wzajemnych wpływów obu zjawisk. Analiza wykazała bezsprzeczny związek pomiędzy czasem i miejscem rozprzestrzeniania się B. dendrobatidis, a czasem i miejscem zwiększenie przypadków malarii. Nie znaleziono przy tym żadnego innego czynnika, który tłumaczył by obserwowane wzrosty liczby zachorowań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Każdy z nas przekonał się, że przed komarami nie ma ucieczki. Te małe bzyczące potwory, które zabijają więcej ludzi niż jakiekolwiek inne zwierzę, zawsze nas wyczują i znajdą sposób, by ugryźć. Naukowcy z Boston University odkryli właśnie, że komary mają wyjątkowo zorganizowany zmysł węchu, który wydaje się wyspecjalizowany do wyszukiwania ludzi. Odkrycie to znacząco zmienia naszą wiedzę dotyczącą węchu owadów.
Przedmiotem badań amerykańskich naukowców był gatunek Aedes aegypti. Owady te przenoszą liczne niebezpieczne choroby, jak zika, chikungunya, żółta gorączka. Jeszcze do niedawna zamieszkiwały wyłącznie tropiki, jednak przez zmiany klimatyczne rozszerzają swój zasięg i coraz powszechniej występują np. w Europie czy Stanach Zjednoczonych. Rośnie więc obawa o pojawienie się chorób tropikalnych na obszarach, na których dotychczas nie występowały. Badania nad biologią komarów i sposobami ochrony przed nimi stają się więc coraz pilniejszą potrzebą.
Ludzie wyczuwają zapachy dzięki neuronom węchowym znajdującym się w nosie. Uważa się, że w każdym z tych neuronów dochodzi do ekspresji jednego receptora węchowego. Mamy więc jeden receptor na jeden neuron. Zapachy wyczuwamy więc dzięki wielu różnym receptorom. Każdy z nich wiąże się z inną molekułą zapachową, przesyła informacje do mózgu, gdzie tworzona jest pełna mapa danego zapachu, dzięki czemu wiemy, co czujemy. Podobnie działa to u owadów, z tym że u nich za wyczuwanie zapachów odpowiedzialne są czułki.
Okazuje się jednak, że zmysł węchu Aedes aegypti zorganizowany jest inaczej. U komarów w jednym neuronie dochodzi do ekspresji wielu receptorów węchowych. To szokująco dziwaczne. Nie tego się spodziewaliśmy, mówi kierująca grupą badawczą profesor Meg Younger.
Na potrzeby badań grupa Younger stworzyła genetycznie zmodyfikowane komary, które świeciły pod wpływem pewnych zapachów. W ten sposób naukowcy mogli na bieżąco obserwować reakcję zwierząt na zapachy. Wykorzystali też techniki genetyczne do oznaczenia różnych grup neuronów węchowych.
Badania wykazały, że komary posiadają niezwykły zmysł węchu, w którym w pojedynczym neuronie dochodzi do ekspresji wielu różnych receptorów. To wskazują na istnienie systemu redundancji i specjalizacji w wyczuwaniu ludzi. Odkrycie wyjaśnia też wyniki wcześniejszych badań, w czasie których usuwano komarom całe zestawy neuronów węchowych odpowiedzialnych za wyczuwanie dwutlenku węgla, co jednak nie przeszkadzało owadom w znalezieniu człowieka.
Profesor Younger mówi, że przeprowadzone badania mogą wyjaśniać, dlaczego tak trudno jest uchronić się przed komarami. Teraz uczona chce zbadać, jak wyjątkowy system węchowy Aedes aegypti wpływa na zachowanie komarów. Jej celem jest opracowanie bardziej skutecznych repelentów lub też atraktantów, które będą dla komarów bardziej atrakcyjne niż człowiek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Większość szczepionek wymaga wielokrotnego podania przed osiągnięciem maksymalnej odporności przez osobę zaszczepioną. Badacze z MIT postanowili zaradzić temu problemowi i opracowali mikrocząstki, które można dopasować tak, by uwalniały swoją zawartość w określonych momentach. W ten sposób mikrocząstki wprowadzone do organizmu podczas pierwszego szczepienia, samodzielnie uwalniałyby w określonym czasie dawki przypominające.
Tego typu szczepionka byłaby szczególnie przydatna podczas szczepień dzieci w tych regionach świata, gdzie dostęp do opieki medycznej jest utrudniony. Podanie kolejnych dawek nie wymagałoby wówczas trudnego organizacyjnie i logistycznie spotkania z lekarzem czy pielęgniarką.
Nasza platforma może być stosowana do wszelkich typów szczepionek, w tym do rekombinowanych szczepionek antygenowych, bazujących na DNA czy RNA. Zrozumienie procesu uwalniania szczepionki, który opisaliśmy w naszym artykule, pozwoliło na poradzenie sobie z problemem niestabilności szczepionki, który może pojawić się w czasem, mówi Ana Jaklenec z Koch Institute for Integrative Cancer Research na MIT. Twórcy nowej platformy dodają, że można ją dostosować do podawania innych środków, np. leków onkologicznych czy preparatów używanych w terapii hormonalnej.
Zespół z MIT już w 2017 roku opisał nową technikę produkcji pustych mikrocząsteczek z PLGA. To biokompatybilny polimer, który jest od dłuższego czasu zatwierdzony do stosowania w implantach, protezach czy niciach chirurgicznych. Technika polega na stworzeniu silikonowych matryc, w którym PLGA nadaje się kształt przypominający filiżanki oraz pokrywki. Następnie „filiżanki” z PLGA można wypełniać odpowiednią substancją, przykryć pokrywką i delikatnie podgrzać, by „filiżanka” i pokrywka się połączyły, zamykając substancję w środku.
Teraz naukowcy udoskonalili swoją technikę, tworząc wersję, pozwalającą na uproszczoną i bardziej masową produkcję cząsteczek. W artykule opublikowanym na łamach Science Advances opisują, jak dochodzi do degradacji cząsteczek w czasie, co powoduje uwalnianie zawartości „filiżanek” oraz w jaki sposób zwiększyć stabilność szczepionek zamkniętych w cząsteczkach. Chcieliśmy zrozumieć mechanizm tego, co się dzieje oraz w jaki sposób informacja ta pomoże nam na ustabilizowanie szczepionek, mówi Jaklenec.
Badania pokazały, że PLGA z którego zbudowane są mikrocząsteczki, jest stopniowo rozbijany przez wodę. Materiał staje się stopniowo porowaty i bardzo szybko po pojawieniu się pierwszych porów, rozpada się, uwalniając zawartość „filiżanek”.
Zrozumieliśmy, że szybkie tworzenie się porów jest kluczowym momentem. Przez długi czas nie obserwujemy tworzenia się porów. I nagle porowatość materiału wzrasta i dochodzi do jego rozpadu, dodaje jeden z badaczy, Morteza Sarmadi. Po tym odkryciu naukowcy zaczęli badać, jak różne elementy, w tym wielkość i kształt cząstek czy skład polimeru, wpływają na formowanie się porów i czas uwalniania zawartości. Okazało się, że kształt i wielkość cząstek nie mają wielkiego wpływu na uwalnianie zawartości. Decydujący okazał się skład polimeru i grupy chemiczne do niego dołączone. Jeśli chcesz, by zawartość „filiżanek” uwolniła się po 6 miesiącach, musisz użyć odpowiedniego polimeru, a jeśli ma się uwolnić po 2 dniach, to trzeba użyć innego polimeru. Widzę tutaj szerokie pole do zastosowań, dodaje Sarmadi.
Osobnym problemem jest stabilność środka zamkniętego w mikrocząsteczkach. Gdy woda rozbija PLGA produktami ubocznymi tego procesu są m.in. kwas mlekowy i kwas glikolowy, które zakwaszają środowisko. To zaś może doprowadzić do degeneracji leków zamkniętych w cząsteczkach. Dlatego też naukowcy z MIT prowadzą właśnie badania, których celem jest przeciwdziałanie zwiększenia kwasowości przy jednoczesnym zwiększeniu stabilności leków zamkniętych w „filiżankach”. Powstał też specjalny model komputerowy, który oblicza, jak mikrocząsteczka o konkretnej architekturze będzie ulegała rozpadowi w organizmie.
Korzystając z tego modelu naukowcy stworzyli już szczepionkę na polio, którą testują na zwierzętach. Szczepionkę na polio trzeba podawać od 2 do 4 razy, testy pokażą, czy po jednorazowym podaniu dojdzie do uwolnienia dawek przypominających w odpowiednim czasie.
Nowa platforma może być też szczególnie przydatna podczas leczenia nowotworów. Przeprowadzone wcześniej testy wykazały, że po jednorazowym wstrzyknięciu w okolice guza, zamknięty w mikrokapsułkach lek został uwolniony w kilkunastu dawkach na przestrzeni kilkunastu miesięcy i doprowadził do zmniejszenia guza i ograniczenia przerzutów u myszy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Mało kto lubi komary. Są uważane za jedne z najbardziej uprzykrzających życie owadów, a do tego roznoszą choroby, zabijające każdego roku olbrzymią liczbę ludzi. Wiele osób najchętniej wyeliminowałoby komary w ogóle. Jednak ich pozbycie się może spowodować poważne zmiany w ekosystemie. Tymczasem nasze zdrowie jest w wielu aspektach bezpośrednio powiązane ze zdrowiem ekosystemu, również z tym, jakie miejsce zajmują w nim komary.
María José Ruiz-López sporo wie o komarach. Unia Europejska finansuje jej badania nad rolą komarów w przenoszeniu Wirusa Zachodniego Nilu. Komary odgrywają wiele ról w środowisku naturalnym, mówi uczona. Przypomina, że krwią żywią się jedynie samice. Za to zarówno samice, jak i samce, żywią się nektarem roślinnym. To zaś oznacza, że są istotnymi zapylaczami, tym ważniejszymi, iż aktywnymi w nocy, gdy inni zapylacze nie pracują.
Jednak rola ekologiczna komarów nie ogranicza się wyłącznie do zapylania przez osobniki dorosłe. Larwy komarów odfiltrowują z wód stojących mikroorganizmy, glony i detrytus, martwą materię organiczną. Same zaś stanowią pożywienie dla małych ryb i płazów, które z kolei są pożywieniem dla większych ryb i ptaków. A dorosłe komary to pożywienie dla ptaków i pająków. Dlatego też Ruiz-López ostrzega, że wyeliminowanie nawet jednego gatunku komarów przyniesie konsekwencje, jakich nie potrafimy przewidzieć. Prawdopodobnie będą poważniejsze, niż sobie wyobrażamy, stwierdza.
Jak już wspomnieliśmy, Ruiz-López bada rolę, jaką komary odgrywają w roznoszeniu Wirusa Zachodniego Nilu. Wirus ten od dziesięcioleci obecny jest w Europie. W latach 2011–2019 wykryto 3549 przypadków infekcji wśród ludzi. Obecnie wirus zwiększa swój zasięg i przesuwa się na północ. W 2018 roku zaczął infekować ludzi w Niemczech, a w 2020 pojawił się w Holandii.
Z badań Ruiz-López jasno wynika, jak ważne jest, byśmy nie niszczyli środowiska naturalnego. Otóż Wirus Zachodniego Nilu zwykle roznosi się pomiędzy ptakami a komarami. Uczona odkryła, że niektóre gatunki ptaków, jak np. wróble, są bardzo podatne na działanie tego wirusa. Inne, jak przepiórka czy turkawka, są bezobjawowymi nosicielami. Dla ludzi wirus zaczyna stanowić problem, gdy usuną ze środowiska ulubione źródło pożywienia komarów, czyli ptaki. Wtedy komary zaczynają szukać innego źródła krwi i trafiają na ludzi. Wtedy właśnie dochodzi do infekcji.
Zawsze na swoich wykładach mówi, że to jeden wielki system zdrowotny. Że nasze zdrowie nie jest czymś oddzielnym od zdrowia zwierząt i całego ekosystemu. W zdrowym ekosystemie istnieją komary, które oczyszczają wodę i którymi żywią się pająki. Ekosystem potrzebuje wszystkich tych elementów, stwierdza uczona.
Komary mają swoje ulubione ofiary. Te, które roznoszą Wirusa Zachodniego Nilu, lubią żerować na ptakach. Gdy zaczyna brakować ulubionych żywicieli, owady szukają dla nich zastępstwa. I znajdują nas.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.