Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Inspirujące wodzenie palcem

Recommended Posts

Czy czynność tak prosta, jak wodzenie palcem po płaskiej powierzchni, może stać się obiektem poważnych badań? Jak najbardziej! Mało tego - studiowanie tak banalnego ruchu może dostarczyć zaskakujących informacji na temat funkcjonowania naszych mózgów.

Autorami interesującego eksperymentu są naukowcy z zespołu kierowanego przez Francisco Valero-Cuevasa z University of Southern California. Ośmioro uczestników studium poproszono o to, by oparli podstawę dłoni na twardej powierzchni, a następnie palcem wskazującym nacisnęli z całej siły na płytkę podłączoną do miernika nacisku. 

Chwilę później pomiary wykonano ponownie, lecz tym razem ochotnicy mieli za zadanie naciskać na płytkę i jednocześnie przesuwać palec po jej powierzchni. Aby im to ułatwić, uczestników wyposażono w specjalne "naparstki", pokryte, podobnie jak płytka, warstwą teflonu.

W swoim raporcie badacze przyznają, że spodziewali się, iż zwiększanie szybkości, z jaką palec przesuwa się po powierzchni płytki, będzie wymuszało proporcjonalne zmniejszanie wywieranego na nią nacisku. Miałoby to wynikać z budowy mięśni, które, jak się zdawało, nie są w stanie utrzymać pełnego skurczu przy jednoczesnym poruszaniu się innych muskułów.

Ku zaskoczeniu autorów studium okazało się jednak, że palec "zajmujący się" wyłącznie naciskaniem na płytkę rzeczywiście wywiera na nią większy nacisk, lecz wprawiony w ruch naciskał na powierzchnię ze stałą siłą, niezależną od tego, jak szybko się poruszał.

Skąd bierze się to niespodziewane zjawisko? Zdaniem autorów wynika ono z działania nie mięśni, lecz układu nerwowego. Gdy zostaje on zaangażowany w poruszanie palcem, nie jest w stanie zachować pełnej kontroli nad mięśniami odpowiedzialnymi za nacisk. "Zaoszczędzone" w ten sposób możliwości zostają wówczas wykorzystane do kontrolowania ruchu na boki.

Z badań przeprowadzonych przez zespół Valero-Cuevasa można wysunąć przewrotny wniosek, że choć ludzkie mózgi pozwoliły nam na latanie w kosmos, nie są one w stanie poradzić sobie z... poruszaniem pojedynczym palcem! Na całe szczęście jesteśmy jednak na tyle bystrzy, by próbować wykorzystać zdobytą wiedzę. Jak oceniają autorzy, może się ona przydać m.in. producentom robotów oraz lekarzom zajmującym się badaniami z zakresu neurologii.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Specjalistom z University of Minnesota udało się powstrzymać komórki nowotworowe przed rozprzestrzenianiem się oraz zbadać w jaki sposób zostały one powstrzymane.
      Od lat wiadomo, że komórki nowotworowe rozprzestrzeniają się po określonych trasach. Wykorzystują swoiste „autostrady” do ruchu wewnątrz guza oraz, po jego opuszczeniu, po naczyniach krwionośnych i tkankach. Osoby, u których występuje duża liczba takich „autostrad” mają mniejsze szanse na przeżycie choroby. Dotychczas nie wiedziano, w jaki sposób komórki nowotworowe rozpoznają te drogi i jak się po nich poruszają.
      Uczeni z University of Minnesota badali w warunkach laboratoryjnych sposób przemieszczania się komórek raka piersi i wykorzystywali różne leki, próbując powstrzymać ich ruch. Okazało się, że gdy zaburzyli mechanizm, który zwykle pozwala komórkom na poruszanie się, nagle komórki nowotworowe zaczęły poruszać się jak bezkształtna galaretowata masa.
      Komórki nowotworowe są bardzo podstępne. Nie spodziewaliśmy się, że zmienią sposób poruszania się. To wymusiło na nas zmianę taktyki tak, by jednocześnie zablokować oba rodzaje ruchu. Dopiero wówczas przestały się poruszać i pozostały w miejscu, mowi jeden z autorów badań, profesor Paolo Provenzano.
      Przerzuty są przyczyną śmierci 90% osób umierających na nowotwory. Jeśli udałoby się zablokować ruch komórek, pacjenci i lekarze zyskaliby więcej czasu na wdrożenie skutecznego leczenia.
      Kolejnym krokiem badań będzie rozszerzenie eksperymentów na badania na zwierzętach. Mają nadzieję, że w ciągu kilku lat uda im się rozpocząć badania kliniczne na ludziach. Chcą też badać interakcje leków z komórkami nowotworowymi i ewentualne efekty uboczne.
      Naszym ostatecznym celem jest znalezienie sposobu na całkowite zablokowanie ruchu komórek nowotworowych i zwiększenie ruchliwości komórek układu odpornościowego, by te zwalczały nowotwór, mówi Provenzano.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy zdrowa, ale nieaktywna osoba zacznie się ruszać, błyskawicznie zmienia się ekspresja genów w mięśniach szkieletowych. Naukowcy z Karolinska Institutet podkreślają, że to kwestia minut i wystarczy godzina ćwiczeń, by wzrosła aktywność genów wspomagających rozkład tłuszczów (Cell Metabolism).
      Nasze mięśnie są naprawdę plastyczne - twierdzi prof. Juleen Zierath. Szwedzi wykazali, że w DNA pobranym z mięśni szkieletowych ludzi, którzy właśnie ćwiczyli, jest mniej grup metylowych niż przed ćwiczeniami. Zmiany zachodzą w obrębie pasm DNA stanowiących "lądowisko" dla czynników transkrypcyjnych, które biorą udział we włączaniu genów odpowiedzialnych za adaptację mięśni do aktywności fizycznej.
      Badając zmiany epigenetyczne zachodzące wskutek forsownych ćwiczeń, Zierath, Romain Barrès i inni wykonali biopsje mięśnia udowego 8 mężczyzn, którzy prowadzili raczej siedzący tryb życia. Okazało się, że grupa metylowa zniknęła z kilku genów zaangażowanych w metabolizm tłuszczów. Demetylacja pozwalała na produkcję większej ilości białek.
      Zespół uważa, że za zaobserwowane zjawisko może odpowiadać uwalnianie jonów wapnia przez retikulum endoplazmatyczne komórek mięśniowych (ER zachowuje się tak pod wpływem potencjału czynnościowego, tutaj wywołanego ćwiczeniami). Kiedy pobrane próbki wystawiono na oddziaływanie kofeiny, która zwiększa poziom wapnia w mięśniach, także zaszła demetylacja. Zierath nie zaleca jednak zastępowania ruchu filiżanką kawy, bo mała czarna nie zapewnia pozostałych korzyści wynikających z ćwiczenia.
      Od jakiegoś czasu wiadomo, że ćwiczenia wywołują w mięśniach zmiany, w tym nasilenie metabolizmu cukrów i tłuszczów. My odkryliśmy, że najpierw zachodzą zmiany w metylacji. Co ciekawe, kiedy w laboratorium doprowadzano do skurczów mięśni, zachodziły identyczne zmiany epigenetyczne.
    • By KopalniaWiedzy.pl
      Chcąc zbadać, w jaki sposób orangutany maksymalizują wydajność energetyczną ruchu, naukowcy z Uniwersytetu w Birmingham korzystają z pomocy freerunnerów.
      Skonstruowano makietę drzewnego habitatu - rodzaj poligonu ćwiczebnego. Freerunnerzy będą naśladowali 3 podstawowe ruchy małp: wspinanie, ponieważ zwierzęta muszą się wtedy przeciwstawiać sile ciążenia, bujanie między drzewami oraz skakanie, które choć efektywne energetycznie, jest stosowane jedynie w ostateczności. Dr Susannah Thorpe ma nadzieję, że odkrycia dotyczące konsumpcji energii uda się jakoś przełożyć na poprawę ludzkich osiągnięć.
      "Metody pomiaru energetyki lokomocji naczelnych są ograniczone. Większość danych pochodzi z modeli matematycznych. My proponujemy nową i bardziej bezpośrednią technikę oceny, jak koszty nadrzewnego przemieszczania się orangutanów są modulowane przez środowisko".
      Ludzie będą nosić 2 typy urządzeń: 1) respirometr do pomiaru zużycia tlenu oraz 2) przyspieszeniomierz z trybem zapisu danych. Biorąc pod uwagę płynną naturę i szeroki zakres ruchów małp, profesjonalni freerunnerzy wydają się świetnymi obiektami do badań.
      Brytyjczycy zamierzają stwierdzić, jak wydatkowanie energii zmienia się przy różnych typach lokomocji, różnej znajomości habitatu i różnym stopniu ustępowania gałęzi pod naporem ciała.
      Znajomość wymogów środowiskowych orangutanów to kwestia kluczowa dla właściwej ochrony gatunku oraz planowania reintrodukcji.
    • By KopalniaWiedzy.pl
      Często słyszy się, że telewizja to złodziej czasu, który można by przeznaczyć na ćwiczenia czy kontakty z innymi ludźmi. Okazuje się, że w kwestii poprawy formy da się coś zrobić, wystarczy maszerować w miejscu po rozpoczęciu przerwy reklamowej (Medicine & Science in Sports & Exercise).
      Naukowcy z University of Tennessee badali grupę 23 kobiet i mężczyzn w wieku 18-65 lat. W studium uwzględniono osoby reprezentujące różne kategorie wskaźnika masy ciała (BMI). Sprawdzano, ile kalorii ulega spaleniu podczas leżenia, siedzenia, stania, chodzenia w miejscu i marszu na bieżni z prędkością ok. 5 km/h. W drugiej części eksperymentu ci sami badani na siedząco oglądali przez godzinę telewizję albo spędzali przed nim tyle samo czasu, wykorzystując przerwy reklamowe na marsz w miejscu. Dzięki krokomierzom można było zliczać kroki.
      Chodząc w miejscu w czasie reklam, ochotnicy spalali średnio 148 kilokalorii. Ustalono, że w ciągu mniej więcej 25 minut przeciętnie wykonywali 2111 kroków. Godzinne ćwiczenia na bieżni pozwalały zużyć średnio 304 kilokalorie. Niestety, więźniowie kanap i foteli nie wypadali najlepiej. Po 60 min oglądania stamtąd telewizji spalali zaledwie 81 kcal. Co więcej, nie odnotowano istotnych statystycznie różnic w liczbie spalonych kalorii między odpoczynkiem a oglądaniem TV na siedząco (79 vs. 81 kcal).
      Zespół z Knoxville uważa, że sygnał rozpoczęcia bloku reklamowego może być dobrą wskazówką, że trzeba wstać i trochę się poruszać. Znany dżingiel warto potraktować jako element środowiska, który pomaga w wykształceniu korzystnych dla zdrowia nawyków.
    • By KopalniaWiedzy.pl
      Podczas polowania palczak madagaskarski, zwany też aj-ajem, rozgrzewa swój zakończony hakowatym pazurem długi środkowy palec. Palec ten służy zwierzęciu do opukiwania pni drzew, głównie bambusów, i wydłubywania owadów oraz larw.
      Zdjęcia termograficzne ujawniły, że normalnie dziwny palec aj-aja jest chłodniejszy od pozostałych, ale podczas żerowania jego temperatura rośnie nawet o 6 stopni Celsjusza.
      Naukowcy z Darmouth University, studentka Gillian Moritz i nadzorujący jej prace dr Nathaniel Dominy, uważają, że utrzymując niższą temperaturę cienkiego palca, aj-aj oszczędza energię. To uderzające, o ile chłodniejszy był 3. palec, gdy zwierzę go nie używało i jak szybko ogrzewał się, gdy aj-aj aktywnie poszukiwał pokarmu. Sądzimy, że stosunkowo niskie temperatury nieużywanego palca są związane z jego budową. [Jest długi i cienki], co skutkuje dość wysokim stosunkiem powierzchni do objętości, a to utrudnia utrzymanie ciepła - opowiada Moritz.
      By palec nadawał się do wykonywania swoich zadań i był wrażliwy na drgania, w jego skórze musi się znajdować wiele mechanoreceptorów. Ze względu na zaangażowanie "specjalistycznej aparatury", posługiwanie się środkowym palcem musi być kosztowne z energetycznego punktu widzenia, a przy niższych temperaturach otoczenia, przez gęsto rozmieszczone receptory ucieka sporo ciepła.
      Moritz podaje 2 wyjaśnienia, w jaki sposób palczak madagaskarski reguluje ciepłotę palca. Pierwsza teoria bazuje na rozszerzaniu i kurczeniu naczyń, które dostarczają do niego krew. Druga hipoteza, również związana z naczyniami, jest taka, że chroniąc wyjątkowo długi palec przed uszkodzeniami, podczas poruszania się i w okresach nieaktywności aj-aj wygina go mocno do tyłu. Prowadzi to do zaciśnięcia tętnicy, a ponieważ dopływa mniej krwi, temperatura palca spada.
      W ramach studium Amerykanie obserwowali podczas różnych czynności 8 palczaków madagaskarskich. Okazało się, że gdy staw śródręczno-paliczkowy rozciągał się wskutek odginania nieużywanego "przyrządu", temperatura wydłużonego palca była, w porównaniu do innych palców, niższa o ok. 2,3 st. Celsjusza. Kiedy staw zginał się podczas opukiwania, ogrzewał się średnio o 2 stopnie. Podczas gdy temperatura innych palców pozostawała niezmienna, ciepłota wyspecjalizowanego palca zmieniała się czasem nawet o 6 stopni.
×
×
  • Create New...