Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Norwedzy rozpoczęli testy pierwszej pływającej turbiny wiatrowej. Mają nadzieję, że przed połową lipca na wybrzeże trafi z niej prąd.

Budowanie turbin wiatrowych ma sens tam, gdzie najczęściej wieją wiatry o odpowiedniej sile. Niestety, większość takich miejsc znajduje się na otwartym morzu i konstruowanie mocowanej do dna turbiny jest zbyt drogie. Stąd też pomysł na wykorzystanie technologii stosowanych w pływających platformach wydobywczych i przetestowanie pływającej turbiny.

Urządzenie zostało umieszczone w odległości 10 kilometrów od wybrzeża, w miejscu, gdzie głębokość wody sięga 220 metrów. Turbina o mocy 2,3 megawata jest utrzymywana w pionie dzięki potężnemu stalowemu cylindrowi o długości 100 metrów, który wypełniono balastem. Cylinder zanurzony jest całkowicie w w wodzie, a całość jest przymocowana do dna za pomocą trzech kabli. Taka konstrukcja daje gwarancję, że nie dojdzie do najgorszego, czyli obrócenia się turbiny do góry nogami. Nie oznacza to jednak, że na urządzenie nie czyhają żadne niebezpieczeństwa. Korozja, odpadki, kry lodowe czy gwałtowne sztormy mogą ją uszkodzić czy doprowadzić do przewrócenia się. Twórcy urządzenia, firma StatoilHydro informuje, że można je ustawiać na wodach o głębokości od 120 do 700 metrów.


Jednak, jak zakładają pomysłodawcy pływających turbin, potencjalne korzyści usprawiedliwiają milionowe inwestycje. Wiatry na otwartym morzu się silniejsze i bardziej stałe, co pozwoli na większą produkcję prądu. Z kolei farmy turbin położone wiele kilometrów od lądu nie będą budziły tak dużych kontrowersji wśród ludności jak podobne farmy budowane na lądzie.

Jako, że w większości przypadków w wodach głębszych niż 50 metrów nie opłaca się budować niczego stojącego na dnie, pływające turbiny mogą być idealnym rozwiązaniem dla takich krajów jak Norwegia, Japonia czy Włochy, które nie mają płytkich wód przybrzeżnych. Może być to też atrakcyjna oferta dla USA, które z farm budowanych na wodach oceanicznych mogą uzyskać 1000 gigawatów mocy, jednak aż 810 gigawatów można wyprodukować na wodach głębszych niż 30 metrów.

Share this post


Link to post
Share on other sites

Widziałem makietę tego systemu w czasie konferencji klimatycznej ONZ. Ciekawa rzecz - poszczególne wiatraki są osadzone na zanurzonych do połowy masztach, które obciążono i uformowano w taki sposób, by zawsze obracały cały wiatrak w stronę, z której wieje wiatr. Całość jest tylko luźno przymocowana do dna, żeby nie odpłynęła, ale ma dużą swobodę ruchu, dzięki czemu może reagować na fale, pływy, wiatr itp. Pojęcia nie mam, czy bez dopłat rządowych ten system ma szansę być opłacalny, ale prezentuje się bardzo okazale.

Share this post


Link to post
Share on other sites

Pytanie tylko jakie są skutki uboczne takich instalacji dla podmorskiej fauny czy flory. Nie wiem czy 10kilometrowe przewody z prądem jakoś nie wpłyną na podwodne życie, to samo się może tyczyć odgłosów z samych wiatraków.

Wiadomo że to drugie na stałym lądzie nie jest wcale obojętne dla okolicznego środowiska, ale skoro problemu nie widać gołym okiem to pewnie go nie ma ;/

Share this post


Link to post
Share on other sites

Dokładnie, pomysł bardzo fajny, tylko:

1) żeby się nie okazało że prąd z tego źródła będzie bardzo drogi ze względu na konieczność częstych remontów i napraw. Wszak po wielkim boomie na elektrownie wiatrowe na lądzie okazało się, że ilość prądu przez nie produkowana ma się w zasadzie nijak do kosztu ich produkcji i remontu - w przypadku wersji oceanicznej niszczący wpływ środowiska będzie chyba jeszcze większy..

 

2) hałas i wibracje z tych wiatraków mogą mieć nawet większy wpływ na okoliczną faunę niż w przypadku wersji lądowej..

 

 

Ale poza tym pomysł ciekawy - każde alternatywne źródło energii warto co najmniej przebadać i przeanalizować, a nierzadko poddać testom - na pewno coś pożytecznego się w końcu osiągnie :P

Share this post


Link to post
Share on other sites

Plus dla nas jest taki, że Bałtyk jest bardzo słabo zasolonym morzem, więc uszkodzenia powinny być stosunkowo niewielkie (przynajmniej w porównaniu do turbin ustawionych w innych miejscach). Poza tym jeżeli statki wytrzymują całe lata pływania i cumowania, to chyba taka turbina też powinna.

Share this post


Link to post
Share on other sites

    No właśnie zastanawiam się czy zbadano wpływ na otoczenie. Zarówno ten potencjalnie szkodliwy, jak i pozytywny. Taka farma wiatrowa to doskonałe schronienie dla ryb (jeśli nie będzie im przeszkadzał dzwięk).

  Zaczną się protesty rybaków, że ryby schowały się między wiatrakami :P

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Zmiany klimatyczne mogą w wielu miejscach na świecie zmniejszyć zdolność gleby do absorbowania wody, twierdzą naukowcy z Rutgers University. To zaś będzie miało negatywny wpływ na zasoby wód gruntowych, produkcję i bezpieczeństwo żywności, odpływ wód po opadach, bioróżnorodność i ekosystemy.
      Wskutek zmian klimatu na całym świecie zmieniają się wzorce opadów i inne czynniki środowiskowe, uzyskane przez nas wyniki sugerują, że w wielu miejscach na świecie może dość szybko dojść do znacznej zmiany sposobu interakcji wody z glebą, mówi współautor badań Daniel Giménez. Sądzimy, że należy badać kierunek, wielkość i tempo tych zmian i włączyć je w modele klimatyczne. Uczony dodaje, że obecność wody w glebie jest niezbędna, by ta mogła przechowywać węgiel, jej brak powoduje uwalnianie węgla do atmosfery.
      W ubiegłym roku w Nature ukazał się artykuł autorstwa Giméneza, w którym naukowiec wykazał, że regionalne wzrosty opadów mogą prowadzić do mniejszego przesądzania wody, większego jej spływu po powierzchni, erozji oraz większego ryzyka powodzi. Badania wykazały, że przenikanie wody do gleby może zmienić się już w ciągu 1-2 dekad zwiększonych opadów. Jeśli zaś mniej wody będzie wsiąkało w glebę, mniej będzie dostępne dla roślin i zmniejszy się parowanie.
      Naukowcy z Rutgers University od 25 lat prowadzą badania w Kansas, w ramach których zraszają glebę na prerii. W tym czasie odkryli, że zwiększenie opadów o 35% prowadzi do zmniejszenia tempa wsiąkania wody w glebę o 21–35 procent i jedynie do niewielkiego zwiększenia retencji wody.
      Największe zmiany zostały przez naukowców powiązane ze zmianami w porach w glebie. Duże pory przechwytują wodę, z której korzystają rośliny i mikroorganizmy, co prowadzi do zwiększonej aktywności biologicznej, poprawia obieg składników odżywczych w glebie i zmniejsza erozję.
      Gdy jednak dochodzi do zwiększenia opadów, rośliny mają grubsze korzenie, które mogą zatykać pory, a to z kolei powoduje, że gleba słabiej się poszerza i kurczy gdy wody jest więcej lub mniej.
      W kolejnym etapie badań naukowcy chcą dokładnie opisać mechanizm zaobserwowanych zmian, by móc ekstrapolować wyniki badań z Kansas na inne regiony świata i określić, w jaki sposób zmiany opadów wpłyną na gleby i ekosystemy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Oczyszczanie wody z rozpuszczalników organicznych, takich jak trichloroetylen (TRI), to nic nowego. Ale znalezienie metody, która takie zanieczyszczenia rzeczywiście neutralizuje, a nie tylko przesuwa w inne miejsce, to już wyczyn. Zespół pod kierunkiem dr hab. Anny Śrębowatej opracował metodę katalitycznego wodorooczyszczania, czyli przekształcania TRI w mniej szkodliwe dla środowiska węglowodory. Dzięki naukowcom z IChF PAN woda, nie tylko w naszych kranach, ale też w rzekach, może być czystsza i bezpieczniejsza dla zdrowia.
      Czysta woda to skarb, a zarazem dobro coraz trudniej dostępne. Rozmaite zanieczyszczenia są powszechne, a część z nich niezwykle trudno usunąć. Do takich zanieczyszczeń należy trichloroetylen (w Polsce oznaczany akronimem TRI). Ten organiczny rozpuszczalnik był powszechnie stosowany np. w syntezach organicznych, pralniach chemicznych oraz do przemysłowego odtłuszczania metali w procesie ich obróbki. Ze względu na szkodliwość od 2016 r. jego użycie zostało oficjalnie zakazane. Jednakże biorąc pod uwagę trwałość, może on jeszcze przez wiele lat występować zarówno w wodzie, jak i glebie – wyjaśnia Emil Kowalewski z zespołu, który opracował nowatorską metodę oczyszczania wody z tego związku. Projekt jest częścią globalnego trendu skoncentrowanego na ochronie zasobów wodnych. Prowadzone badania mogą być interesujące dla przemysłu, stać się potencjalnym punktem wyjścia do opracowania nowatorskich systemów oczyszczania wody. Dlaczego?
      Dzisiejsze oczyszczalnie ścieków to systemy składające się z wielu procesów fizycznych, chemicznych i biologicznych, ale efektywnie eliminują głównie konwencjonalne zanieczyszczenia. Inne przy odpowiednio wysokich stężeniach mogą pozostawać w wodzie. Tymczasem trichloroetylenu nie powinno być w niej wcale, ze względu na to, że jest mutagenny, kancerogenny, teratogenny, a do tego niezwykle trwały. Kumuluje się i zostaje na dnie zbiorników, a że jego rozpuszczalność w wodzie jest bardzo słaba, może szkodzić jeszcze przez wiele lat.
      Dziś z takimi związkami radzimy sobie, głównie przeprowadzając ich sorpcję. Jednakże w ten sposób jedynie przenosimy zagrożenie z miejsca na miejsce. Atrakcyjnym rozwiązaniem wydaje się katalityczne wodorooczyszczanie, czyli przekształcanie TRI w mniej szkodliwe dla środowiska węglowodory. Aby w pełni wykorzystać potencjał drzemiący w tej metodzie, trzeba było jednak opracować wydajny, stabilny i tani katalizator -mówi dr hab. Anna Śrębowata, profesor IChF.
      Wcześniej przeprowadzaliśmy badania z katalizatorami palladowymi. Były skuteczne, ale kosztowne - uśmiecha się Emil Kowalewski. Nowe katalizatory niklowe, opracowane w IChF PAN, pozwalają w tani i efektywny sposób prowadzić proces oczyszczania wody w trybie przepływowym, a przy tym są proste w syntezie. Wykorzystując katalizator, w którym nanocząstki niklu o średnicy ok. 20 nm osadzamy na powierzchni węgla aktywnego, łączymy właściwości sorpcyjne węgla i aktywność katalityczną niklu - wyjaśnia dr Kowalewski. W swoich badaniach naukowcy z IChF PAN wykazali ponadto, że nanocząstki niklu osadzone na węglu aktywnym o częściowo uporządkowanej strukturze wykazują wyższą aktywność i stabilność niż analogiczny katalizator oparty na nośniku o strukturze amorficznej.
      Naukowcy są jednak najbardziej dumni z innowacyjnego elementu swoich badań: technologii przepływowej. Dzięki niej można optymalizować parametry procesu, zmniejszyć ilość odpadów, a przy tym wykorzystywać katalizatory, które w reaktorach okresowych (czyli takich, gdzie jednorazowo oczyszcza się określoną partię produktu) były nieefektywne lub wręcz nieskuteczne. Tak było z naszym katalizatorem niklowym - opowiada dr Kowalewski. Bez technologii przepływowej jego zdolności do utylizowania TRI szybko spadały, katalizator ulegał zatruciu. W reaktorze przepływowym nawet po 25 godzinach nie obserwowaliśmy spadku aktywności, choć prowadziliśmy badania na stężeniach około 8000 razy przekraczających polskie normy jego zawartości w wodzie pitnej.
      Gdzie można wykorzystać nowatorską metodę? Przede wszystkim w stacjach uzdatniania wody i oczyszczalniach ścieków. Tam, gdzie chcemy, żeby woda trafiająca do "końcowego odbiorcy", niezależnie czy jest to użytkownik wody z kranu, czy pływająca w rzece ryba, była czysta.
      A co zrobić z produktami reakcji wodorooczyszczania wody z trichloroetylenu? Powstającymi związkami są węglowodory, głównie etylen. Nie powstaje go jednak na tyle dużo, by wystarczyło na dojrzewalnię bananów - uśmiecha się półżartem naukowiec. Po prostu się ulotni...

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Hiszpanii powstała woda o smaku wina, która pozwala konsumentom cieszyć się wybornym smakiem bez ryzyka upojenia alkoholowego. Vida Gallaecia to efekt 2-letniej współpracy między Bodega Líquido Gallaecia i Narodowym Komitetem Badań Naukowych (Consejo Superior de Investigaciones Científicas, CSIC).
      Ponoć finalny produkt smakuje jak wino, ale nie zawiera alkoholu i jest niskokaloryczny. Receptura to, oczywiście, tajemnica. Wiadomo tylko tyle, że wykorzystuje się flawonole z winogron i wytłoczyn po produkcji wina.
      Woda jest wzbogacana flawonolami z winogron i resztek po produkcji wina Godello. [Zdecydowaliśmy się na to, bo] wiele badań powiązało spożycie flawonoli z korzyściami dla zdrowia. Mają one, na przykład, pozytywny wpływ na cukrzycę. [Trudno się zresztą dziwić, gdyż] działają przeciwutleniająco, antybakteryjnie i kardioochronnie - podkreśla dr Carmen Martínez z Misión Biológica de Salcedo (CSIC).
      Vida Gallaecia jest wzbogacana smakami białego (Godello) i czerwonego szczepu winogron (Mencia, jaen). Sama woda pochodzi z galicyjskich źródeł.
      Produkt miał niedawno swoją premierę. Teraz Bodega Líquido Gallaecia szuka partnerów handlowych. Niedługo wodę o smaku wina będzie można kupić w Hiszpanii, ale ponoć winiarze widzą największy potencjał w rynku japońskim.
      Z bodegą kontaktowały się też pewne linie lotnicze, które chciałyby serwować napój w swoich maszynach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Misja OSIRIS-REx, która niedawno dotarła do asteroidy Bennu, odkryła uwięzioną wewnątrz wodę. To potwierdzenie, że Bennu jest bardzo cennym obiektem do badań naukowych.
      OSIRIS-REX znajduje się w odległości kilkunastu kilometrów od asteroidy. Badania rozpoczęły się przed tygodniem. Naukowcy dysponują już pierwszymi danymi. Pochodzą one z dwóch spektrometrów OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) oraz OSIRIS-REx Thermal Emission Spectrometer (OTES). Wskazują one na istnienie grup hydroksylowych, molekuł składających się z atomów tlenu i wodoru. Uczeni przypuszczają, że istnieją one w całej asteroidzie i są zamknięte w tworzących ją glinach. To zaś oznacza, że w którymś momencie swojej historii materiał tworzący Bennu zetknął się z wodą.
      Sama asteroida jest zbyt mała, by występowała na niej woda w stanie ciekłym, jednak odkrycie grup hydroksylowych wskazuje, że ciekła woda była obecna na znacznie większej asteroidzie macierzystej, z której Bennu powstała.
      Obecność minerałów zawierających grupy hydroksylowe potwierdza, że Bennu, pozostałość po formowaniu się Układu Słonecznego, jest wspaniałym obiektem badań. Gdy w 2023 roku na Ziemię zostaną przywiezione próbki asteroidy, naukowcy zyskają skarbiec nowych informacji o historii i ewolucji Układu Słonecznego, mówi Amy Simon z Goddard Space Flight Center.
      Dane przekazane przez OSIRIS-REx Camera Suite (OCAMS) potwierdzają prawdziwość modelu asteroidy, który powstał w 2013 roku na potrzeby misji. Model ten bardzo blisko przypomina rzeczywisty kształt, średnicę i prędkość obrotową asteroidy.
      Powierzchnia Bennu to mieszanina fragmentów wypełnionych skałami i fragmentów dość płaskich. Ilość skalistych nierówności jest jednak większa niż się spodziewano. Zespół naukowy chce bliżej przyjrzeć się asteroidzie, by dobrze wybrać miejsce, z którego zostaną pobrane próbki.
      Wstępne dane wskazują, że wybraliśmy dobry obiekt dla misji OSIRIS-REx. Dotychczas nie napotkaliśmy na żadne problemy, z którymi nie moglibyśmy sobie poradzić. Sonda jest w dobrej kondycji, a instrumenty naukowe pracują lepiej, niż to wymagane. Czas rozpocząć naszą przygodę, stwierdził Dante Lauretta, główny naukowiec misji.
      Obecnie OSIRIS-REx wykonuje wstępne badania asteroidy, przelatując nad jej równikiem oraz oboma biegunami w odległości 7 kilometrów. Na ich podstawie zostanie obliczona masa obiektu. Jej znajomość jest niezbędnym elementem potrzebnym do umieszczenia sondy na orbicie Bennu.
      Po raz pierwszy OSIRIS-REx ma trafić na orbitę Bennu 31 grudnia. Pozostanie tam do połowy lutego. Później rozpocznie kolejną serię przelotów nad asteroidą. Już obecnie wiadomo, że orbita na którą trafi OSIRIS-REx będzie znajdowała się nad centralną częścią Bennu, na wysokości 1,4–2 kilometrów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rosnąca liczba ludności wywiera coraz większy wpływ na środowisko naturalne. Szczególnym wyzwaniem jest zapewnienie odpowiednich zasobów rozrastającym się miastom, których zapotrzebowanie na surowce naturalne jest olbrzymie. Okazuje się, że zwiększenie liczby mieszkańców miasta może prowadzić do lepszego wykorzystywania zasobów. Do takich wniosków doszli naukowcy z Pennsylvania State University, którzy przeanalizowali sposób użycia wody w 65 amerykańskich miastach. Badali miejscowości od średnich rozmiarów po wielkie światowe metropolie.
      Organizacja życia człowieka na naszej planecie nigdy nie była bardziej złożona. Jesteśmy powiązani niezwykłą liczbą zależności światowego handlu i gospodarki. Mieszkańcy wsi kupują żywność przywożoną z drugiego końca kuli ziemskiej. Dlatego też potrzebujemy nowych złożonych narzędzi do analizowania sposobu, w jaki wykorzystujemy surowce naturalne, mówi inżynier profesor Caitlin Grady.
      Aby stworzyć narzędzia analityczne o których mowa, naukowcy musieli najpierw lepiej zrozumieć, w jaki sposób miasta wykorzystują wodę. Przyjrzeliśmy się sposobowi wykorzystywania wody. Nie tylko temu, jak woda trafia do kranów w domach, ale jak trafia do żywności, którą każde z miast produkuje i konsumuje. Przeanalizowaliśmy zarówno bezpośrednie jak i pośrednie użycie wody. Nasz ślad wodny, dodaje uczona.
      Naukowcy wykorzystali dane Departamentu Rolnictwa, Transportu i Służby Geologicznej na temat zaobów wody, przeanalizowali jej użycie przez rolnictwo, hodowlę i przemysł. Okazało się, że w przeliczeniu na głowę mieszkańca, większe miasta zużywają mniej wody.
      W miarę, jak wzrasta populacja miasta, zmniejsza się konsumpcja wody w przeliczeniu na mieszkańca. Największe miasta są pod tym względem najbardziej efektywne, mówi Grady.
      Konsumpcja wody i jej zużycie do produkcji są powiązane ze strukturą gospodarczą miasta, która zmienia się w miarę jego wzrostu. To sugeruje, że większe miasta są bardziej zorientowane na usługi, a spada w nich znaczenie przemysłu. To pozwala wielkim miastom na zmniejszenie ich śladu wodnego poprzez przekierowanie aktywności wymagających zużycia dużych ilości wody do terenów słabiej zaludnionych, wyjaśnia doktorant Tasnuva Mahjabin.
      Zauważono też wyjątki. Nowy Orlean ma znacznie większą konsumpcję wody niż wskazywałaby na to jego wielkość, a z kolei zużycie wody w Los Angeles jest znacznie poniżej średniej dla tej wielkości miast.
      W przyszłości uczeni chcą rozwinąć swój model tak, by pozwalał na analizę większej liczby danych, na przykład, by mógł posłużyć do obliczenia ilości wody zużywanej do produkcji i dostaw energii elektrycznej czy stabilności systemu dostaw wody.

      « powrót do artykułu
×
×
  • Create New...