Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Bakterie mogą przewidywać przyszłe wydarzenia i się na nie przygotowywać – twierdzą badacze z Instytutu Nauki Weizmanna.

Przedstawiciele tamtejszego Wydziału Genetyki Molekularnej - prof. Yitzhak Pilpel, Amir Mitchell i dr Orna Dahan – współpracowali z akademikami z Uniwersytetu w Tel Awiwie: prof. Martinem Kupcem i Galem Romano. Razem obserwowali mikroorganizmy żyjące w zmieniających się przewidywalnie środowiskach: E. coli i drożdże winne. Okazało się, że są one genetycznie przystosowane do przewidywania, co w sekwencji zdarzeń nastąpi za moment. Co więcej, zaczynają one reagować na te zmiany, zanim jeszcze nastąpią.

Przesuwając się wzdłuż przewodu pokarmowego, bakterie E. coli napotykają wiele różnych środowisk. Nauczyły się m.in., że tuż za jednym rodzajem cukru – laktozą – pojawia się inny cukier – maltoza. Izraelski zespół przyglądał się bakteryjnej reakcji na laktozę. Aktywacji ulegały nie tylko geny pozwalające trawić właśnie ją, lecz również sieć genów związanych z wykorzystaniem maltozy. Gdy mikrobiolodzy zmienili kolejność pojawiania się cukrów, podając na początku maltozę, nie nastąpiło jednoczesne uruchomienie genów laktozowych. Oznacza to, że E. coli jest nastawiona na konkretny scenariusz zdarzeń.

Na ciągłe zmiany środowiska są narażone także drożdże winne. Podczas fermentacji stale zmienia się kilka parametrów: zawartość cukru, kwasowość, stężenie alkoholu, podnosi się też temperatura otoczenia. Sytuacja jest bardziej złożona niż w przypadku E. coli, ale Izraelczycy stwierdzili, że podgrzanie otoczenia uruchamia u drożdży geny, które pozwalają im sobie poradzić z zadaniami kolejnego etapu.

Pilpel uważa, że w toku ewolucji kolejne pokolenia bakterii lub grzybów były poddawane klasycznemu warunkowaniu pawłowowskiemu. W tym przypadku dzwonek zastępują jednak bodźce z wcześniejszych etapów, np. pierwszy z cukrów czy zmiana temperatury. Zarówno w ewolucji, jak i przy uczeniu organizm dostosowuje swoją reakcję do wskazówek środowiskowych, zwiększając swoje szanse na przeżycie – przekonuje Amir Mitchell.

Chcąc sprawdzić, czy E. coli rzeczywiście przejawiają uwarunkowane zachowania, panowie opracowali specjalny test. Oparli się przy tym na innym eksperymencie pioniera tej dziedziny – Iwana Pawłowa. Gdy po dzwonku rosyjski fizjolog przestał dawać swoim psom jedzenie, ślinienie po usłyszeniu go stopniowo zanikało (zanikała więc reakcja na bodziec warunkowy). Naukowcy z Instytutu Weizmanna zrobili coś podobnego - wykorzystali bakterie, wyhodowane w środowisku zawierającym laktozę, po której nie pojawiała się jednak maltoza. Po kilku miesiącach mikroorganizmy wyewoluowały, przez co po wyczuciu smaku laktozy nie następowała aktywacja genów maltozy. Uruchamiały się one tylko przy dostępie do realnie istniejącej maltozy.

Izraelczycy opracowali model kosztów i strat, który pozwala przewidzieć, w jakich sytuacjach organizm zwiększy swoje szanse na przeżycie, wypracowując umiejętność "spoglądania" w przyszłość. Teraz zamierzają go przetestować. Pilpel i zespół wierzą, że genetyczna reakcja warunkowa występuje też w pojedynczych komórkach organizmów wyższych, np. człowieka.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo ciekawe odkrycie :P Chociaż, mówiąc szczerze, nazywanie tego "przewidywaniem zdarzeń" jest trochę na wyrost. Przecież zmiana "ustawień" metabolizmu w eksperymencie mogła być równie dobrze efektem zwykłej selekcji naturalnej, a nie zjawiska nazwanego hucznie przewidywaniem zdarzeń. To tak samo, jakby powiedzieć, że przewidują zdarzenia, bo po replikacji DNA przygotowują się do podziału komórki. Aczkolwiek tak jak mówię, samo odkrycie sekwencyjnej aktywacji poszczególnych funkcji fizjologicznych brzmi bardzo ciekawie :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Przecież zmiana "ustawień" metabolizmu w eksperymencie mogła być równie dobrze efektem zwykłej selekcji naturalnej, a nie zjawiska nazwanego hucznie przewidywaniem zdarzeń.

Jak by to wytłumaczyć selekcją naturalną ? Organizmy które przygotowywały się na maltozę po laktozie były bardziej odżywione i miały więcej energii na podział ? Tym samym przekazując to "usprawnienie" kolejnemu pokoleniu ?

One faktycznie nie przewidują przyszłości - gdyby tak było to przy podaniu maltozy przewidziałyby że za chwilę będzie laktoza do jedzonka, one się po prostu programowały na jakiś łańcuch zdarzeń, po to aby zmiany pożywienia wykorzystywać jak najszybciej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Jak by to wytłumaczyć selekcją naturalną ? Organizmy które przygotowywały się na maltozę po laktozie były bardziej odżywione i miały więcej energii na podział ? Tym samym przekazując to "usprawnienie" kolejnemu pokoleniu ?

Otóż to. Te, które by zmutowały w odpowiednią stronę, w pierwszej chwili po dostarczeniu nowej pożywki miałyby przewagę. Biorąc pod uwagę, że bakterie dzielą się w sprzyjających warunkach nawet co 20 minut, już po paru dniach możesz mieć solidne przetasowanie w populacji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@up

 

waldi miales skasowac konto i nigdy juz nie wracac  :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.
      Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.
      Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.
      Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.
      Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.
      Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.
      Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.
      Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.
      To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.
      Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
    • przez Szkoda Mojego Czasu
      Przepraszam, że nie w temacie, ale chyba powinniśmy się zacząć poważnie bać "ekspertów" od zdrowia publicznego.  Poniżej wypowiedź jednego, a jeszcze niżej wykres jak  naprawdę wygląda ilość już wykrytych mutacji w stosunku do innych wirusów.
      "Profesor odniósł się również do doniesień na temat mutowania koronawirusa SARS-CoV-2: - Ten wirus mutuje bardzo niewiele, jest relatywnie stały, nie zaskakuje nas i na razie niczym nie grozi. Zmiany w mutacji są bardzo niewielkie - powiedział. Horban porównał też SARS-CoV-2 do wirusa grypy. Ten drugi mutuje znacznie szybciej i "właściwie to jest co roku nowy wirus i nie jesteśmy w stanie zrobić szczepionki, która zabezpieczy nas raz na zawsze".

    • przez KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Izraelskim naukowcom udało się stworzyć bakterie Escherichia coli, które żywią się dwutlenkiem węgla a nie cukrami i innymi molekułami organicznymi. To jak metaboliczny przeszczep serca, komentuje biochemik Tobias Erb z Instytutu Mikrobiologii im.Maksa Plancka w Marburgu, który nie był zaangażowany w badania.
      To niezwykle ważna osiągnięcie, gdyż całkowicie zmienia sposób funkcjonowania jednego z najważniejszych organizmów modelowych w biologii. Ponadto w przyszłości można by wykorzystać odżywiające się CO2E. coli do tworzenia organicznych molekuł, które mogłoby być wykorzystywane do produkcji żywności lub jako biopaliwa. Produkcja takich towarów powinna wiązać się z mniejszą emisją węgla do atmosfery, a być może udałoby się też usuwać CO2 z powietrza.
      Rośliny i cyjanobakterie wykorzystują światło do zamiany dwutlenku węgla w przydatne molekuły, takie jak DNA, proteiny czy tłuszcze. Jednak organizmy te trudno jest modyfikować genetycznie, przez co dotychczas nie udało się stworzyć z nich wielkich biologicznych fabryk. E. coli łatwo jest modyfikować, a szybki wzrost tego organizmu oznacza, że można ją równie szybko testować i dostosowywać do naszych potrzeb. Problem jednak w tym, że E. coli żywi się cukrami i emituje CO2.
      Biolog Ron Milo i jego zespół z Instytutu Weizmanna, od dekady pracują nad zmianą diety E. coli. W 2016 roku opracowali bakterię, które żywiła się CO2, jednak dwutlenek węgla stanowił niewielki odsetek jej zapotrzebowania na węgiel.
      Ostatnio Milo wraz z kolegami wykorzystali techniki inżynierii genetycznej oraz ewolucji w laboratorium i stworzyli szczep E. coli, który cały potrzebny węgiel czerpie z dwutlenku węgla. Najpierw naukowcy wyposażyli bakterię w enzymy, które organizmy przeprowadzające fotosyntezę wykorzystują do zamiany CO2 w węgiel organiczny. Dodatkowo E. coli trzeba było wyposażyć w gen, który umożliwiał jej czerpanie energii z mrówczanów. Jednak nawet wówczas bakteria nie chciała rozwijać się bez obecności cukrów. Wówczas naukowcy zaprzęgnęli do pracy ewolucję. Przez rok hodowali kolejne pokolenia E. coli, które przetrzymywano w warunkach 250-krotnie wyższej koncentracji CO2 niż w atmosferze ziemskiej i podawano minimalne ilości cukrów. Po około 200 dniach pojawiły się pierwsze bakterie zdolne do wykorzystania CO2 jako jedynego źródła cukru. Po około 300 dniach bakterie te w warunkach laboratoryjnych namnażały się szybciej, niż bakterie, które nie wykorzystywały dwutlenku węgla.
      Milo mówi, że zmodyfikowane E. coli wciąż mają zdolność wykorzystywania cukrów i, jeśli mogą, to właśnie je preferują. Rozwijają się też wolniej. Standardowe E. coli dwukrotnie zwiększają swoją liczbę co 20 minut, tymczasem u zmodyfikowanych E. coli w atmosferze składającej się z 10% CO2 podział zachodzi co 18 godzin. Ponadto nie są w stanie przetrwać bez cukrów w obecnej atmosferze ziemskiej, w której ilość dwutlenku węgla wynosi 0,041%.
      Izraelczycy pracują teraz nad przyspieszeniem wzrostu bakterii i umożliwieniem im rozwijania się przy niższych stężeniach dwutlenku węgla. Podkreślają, że to na razie wstępne badania i miną całe lata, zanim tak zmodyfikowane E. coli zostaną wykorzystane w roli fabryk.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...