Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Nadtlenek wodoru, czyli popularna woda utleniona (H2O2), jest związkiem o ogromnym znaczeniu dla układu immunologicznego. Od wielu lat wiadomo, że komórki odpornościowe wytwarzają go w celu zniszczenia ciał obcych, lecz najnowsze badania wskazują na jeszcze jedną, bardzo istotną rolę tej substancji. Jak wykazali naukowcy z Uniwersytetu Harvarda, wzrost stężenia nadtlenku wodoru w tkance pozwala komórkom odpornościowym na zidentyfikowanie miejsca uszkodzenia tkanki.

Odkrycia dokonano podczas badań nad metodą wykrywania tzw. reaktywnych form tlenu, czyli aktywnych chemicznie związków o charakterze silnych utleniaczy, do których zalicza się m.in. wodę utlenioną. Naukowcy, kierowani przez dr. Philippa Niethammera, nacinali płetwę ogonową ryb Danio rerio, po czym obserwowali zmianę koncentracji reaktywnych form tlenu w tkance z wykorzystaniem nowej techniki.

Metoda opracowana przez naukowców z Uniwersytetu Harvarda polegała na wzbogaceniu genomu D. rerio o gen kodujący białko zmieniające swoją barwę pod wpływem reaktywnych form tlenu. Ku zaskoczeniu badaczy okazało się, że stężenie tych ostatnich w zranionej tkance rosło zaraz po powstaniu uszkodzenia, nie zaś po rozwinięciu się stanu zapalnego i zgromadzeniu się komórek odpornościowych, jak oczekiwano. 

Niespodziewany przebieg eksperymentu skłonił akademików do wykonania serii testów na rybach, u których zablokowano aktywność genu odpowiedzialnego za syntezę nadtlenku wodoru. Jak się okazało, zmodyfikowane zwierzęta nie były w stanie reagować na uszkodzenie tkanki, ponieważ ich komórki odpornościowe traciły swoją zdolność do wykrywania miejsca zranienia i migracji w jego kierunku.

Oczywiście, jest jeszcze zbyt wcześnie, by zakładać istnienie analogicznego zjawiska w organizmie człowieka. Jeżeli jednak nadtlenek wodoru odgrywa równie istotną rolę także w naszej fizjologii, może to oznaczać przełom w badaniach nad licznymi chorobami związanymi z patologicznym funkcjonowaniem układu odpornościowego.

Share this post


Link to post
Share on other sites

No jasne, mi mama też to mówiła:) Tylko pytanie: Czy mamusie wiedziały o tym, że dzięki wodzie utlenionej nasze komórki odpornościowe wiedzą gdzie mają się udać?? a jeśli wiedziały to skąd?;)

Share this post


Link to post
Share on other sites

Mamom wystarczało to, że woda działała. Mało istotne było to, dlaczego tak się dzieje ;)

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Kwasy omega-3, które występują m.in. w olejach rybich, chronią nerwy przed uszkodzeniem i przyspieszają ich regenerację. To doskonała wiadomość dla pacjentów, którzy wskutek choroby czy urazu zmagają z bólem, paraliżem czy osłabieniem siły mięśniowej.
      Naukowcy z Queen Mary, University of London, których artykuł ukazał się w Journal of Neuroscience, skoncentrowali się na komórkach nerwów obwodowych. Mogą się one regenerować, ale mimo postępów w zakresie chirurgii, dobre rezultaty osiąga się raczej przy lekkich urazach.
      Na początku Brytyjczycy przyglądali się izolowanym mysim neuronom. Rozciągając je lub pozbawiając dopływu tlenu, symulowali uszkodzenia powstające podczas wypadku lub urazu. Oba zabiegi zabiły wiele komórek, ale podanie kwasów omega-3 zadziałało jak zabezpieczenie, znacznie ograniczając śmierć komórkową. W następnym etapie akademicy badali nerw kulszowy gryzoni. Stwierdzili, że dzięki kwasom omega-3 regenerował się szybciej i w większym zakresie. Dodatkowo zmniejszało się prawdopodobieństwo zaniku mięśni w następstwie uszkodzenia nerwu.
    • By KopalniaWiedzy.pl
      Betacellulina (BTC), białko wytwarzane przez naczynia krwionośne mózgu, może wspomóc regenerację przy pourazowym uszkodzeniu mózgu lub w przebiegu jakiejś choroby, np. demencji. Okazuje się, że u myszy BTC stymuluje mózgowe komórki macierzyste, by się dzieliły i tworzyły nowe neurony.
      Neurogeneza - powstawanie nowych neuronów - jest u ssaków ograniczona głównie do okresu prenatalnego i tuż po urodzeniu, jednak wykazano, że dzięki 2 niszom komórek macierzystych może zachodzić również w dorosłym mózgu. Nisze dostarczają neurony do opuszki węchowej, która odpowiada za powonienie i do zaangażowanego w pamięć i uczenie hipokampa (tutaj trafiają komórki z zakrętu zębatego formacji hipokampa).
      Nisze wytwarzają różne sygnały, które kontrolują tempo podziału komórek macierzystych i wpływają na to, do jakich komórek się one zróżnicują. W zwykłych warunkach komórki macierzyste z tych okolic wytwarzają neurony, ale w odpowiedzi na uraz, np. udar, mają tendencję do przekształcania się w glej, co prowadzi do powstawania blizn.
      Nisze komórek macierzystych w mózgu nie są dobrze poznane, ale wydaje się, że los komórek macierzystych kontroluje wiele współdziałających czynników. Sądzimy, że czynniki te są doskonałe wyważane, by precyzyjnie kontrolować liczbę nowych neuronów, które mają zaspokoić rozmaite zapotrzebowania zdrowego narządu. W przypadku urazu bądź choroby komórki macierzyste nie radzą sobie ze zwiększonym zapotrzebowaniem albo kosztem długoterminowych napraw, traktują priorytetowo kontrolę [świeżych] uszkodzeń - opowiada dr Robin Lovell-Badge z brytyjskiego Medical Research Council.
      Naukowcy pracowali na modelu mysim. Badali wpływ BTC, które powstaje w komórkach naczyń krwionośnych w obrębie nisz, na tempo neurogenezy. Okazało się, że betacellulina stanowi sygnał dla neuroblastów (komórek macierzystych neuronów i komórek gleju), by zaczęły się dzielić. Podanie gryzoniom dodatkowego BTC zwiększyło liczbę komórek macierzystych, prowadząc do powstania wielu nowych neuronów. Kiedy zwierzętom zaadministrowano przeciwciała blokujące aktywność BTC, neurogeneza została zahamowana. Ponieważ betacellulina powoduje, że komórki macierzyste przekształcają się raczej w neurony niż w glej, można ją wykorzystać w medycynie regeneracyjnej.
      W przyszłości akademicy zamierzają zbadać funkcje BTC w zdrowym mózgu oraz sprawdzić, jaką funkcję w uszkodzonym mózgu spełnia samo białko, a także BTC w połączeniu z przeszczepem nerwowych komórek macierzystych.
    • By KopalniaWiedzy.pl
      Nanocząstki tlenku ceru(IV) spełniają w silnikach Diesla funkcję nośnika tlenu. By zwiększyć efektywność spalania, stosuje się np. płyn z CeO2. Niestety, rozwiązanie to wydaje się niekorzystne dla zdrowia, bo nanocząstki mogą docierać z płuc do wątroby i prowadzić do uszkodzenia tego narządu (International Journal of Nanomedicine).
      W odróżnieniu od silników benzynowych, w dieslach paliwo nie jest wstępnie mieszane z powietrzem, dlatego tworzą się punkty o wysokim i niskim stężeniu tlenu. Rola tlenku ceru(IV) polega na ograniczeniu ilości niespalonych węglowodorów i wyeliminowaniu z gazów odlotowych cząstek sadzy.
      Dr Eric R. Blough z Centrum Diagnostyki Nanosystemów Uniwersytetu Marshalla prowadził badania na szczurach. Ustalono, że u zwierząt wzrost stężenia ceru w wątrobie zależał od zastosowanej dawki nanocząstek, których wielkość można porównać do 1/40000 średnicy ludzkiego włosa. Skok poziomu ceru wiązał się ze wzrostem stężenia enzymów wątrobowych. Dowody histologiczne wskazywały na uszkodzenie narządu.
      W porównaniu do grupy kontrolnej, w surowicy krwi gryzoni eksperymentalnych zaobserwowano wzrost stężenia aminotransferazy alaninowej (ALAT), a także obniżony poziom albumin, trójglicerydów i stosunku sodu do potasu. Wątroba szczurów wystawionych na oddziaływanie CeO2 ważyła mniej. Akumulacja granularnego materiału, zakres zwyrodnienia wodniczkowego czy powiększenie hepatocytów zależały od dawki nanocząstek. W przypadku nerek, śledziony i serca nie stwierdzono zmian histopatologicznych.
      Warto przypomnieć, że niektóre z wcześniejszych badań wskazywały, że nanocząstki tlenku ceru(IV) mogą działać jako przeciwutleniacze. Spekulowano nawet, że warto by się zastanowić nad ich zastosowaniem w leczeniu chorób sercowo-naczyniowych, neurodegeneracyjnych oraz popromiennego uszkodzenia tkanek.
      Biorąc pod uwagę rosnące wykorzystanie nanomateriałów w przemyśle i produktach codziennego użytku, coraz ważniejsze staje się ustalenie, czy substancje te mogą być szkodliwe. Zgodnie z naszą wiedzą, to pierwszy raport oceniający, czy inhalowanie nanocząstek tlenku ceru(IV) wpływa toksycznie na wątrobę - wyjaśnia Blough.
      Główny autor studium - dr Siva K. Nalabotu - dodaje, że CeO2 dostaje się z płuc do wątroby za pośrednictwem krwiobiegu. Naszym następnym krokiem będzie określenie mechanizmu toksyczności.
      Tlenek ceru(IV) znajduje zastosowanie nie tylko w paliwach. Stanowi także podstawowy składnik zestawu polerskiego do usuwania rys na szkle. Stykamy się z nim więc o wiele częściej, niż się wydaje.
    • By KopalniaWiedzy.pl
      Przyjmowanie przed radioterapią bakterii probiotycznych Lactobacillus rhamnosus GG zmniejsza uszkodzenia nabłonka jelita cienkiego w czasie leczenia. Choć badania prowadzono na myszach, naukowcy ze Szkoły Medycznej Washington University w St. Louis uważają, że korzyści z tego prostego zabiegu mogą także odnieść pacjenci napromieniani z powodu guzów jamy brzusznej.
      Amerykanie wyjaśniają, że radioterapię stosuje się m.in. w leczeniu raka gruczołu krokowego, szyjki macicy czy pęcherza moczowego. Niestety, poza komórkami nowotworowymi giną także komórki zdrowe, co w przypadku uszkodzenia nabłonka jelit może prowadzić do ataków silnej biegunki. W przypadku niektórych chorych trzeba z tego powodu przerwać leczenie albo zmniejszyć dawkę promieniowania, dając przewodowi pokarmowemu czas na regenerację. Probiotyki mogą stanowić metodę zabezpieczania jelita cienkiego przed uszkodzeniami tego rodzaju - podkreśla dr William Stenson.
      Stenson zauważył, że myszy poddawane radioterapii chronią różne szczepy bakterii probiotycznych Lactobacillus, w tym wspominane na początku L. rhamnosus GG (LGG). Wyściółka jelit ma grubość zaledwie jednej warstwy komórek. Ta warstwa komórek oddziela resztę organizmu od tego, co znajduje się w przewodzie pokarmowym. Jeśli nabłonek uszkodzi się wskutek radioterapii, bakterie, które normalnie rezydują w jelitach, mogą zostać uwolnione i podróżować po organizmie, powodując poważne problemy w rodzaju sepsy.
      Studium wykazało, że probiotyki spełniały swoje zadanie tylko wtedy, jeśli podawano je przed radioterapią. We wcześniejszych badaniach z udziałem ludzi pacjenci zazwyczaj zażywali probiotyki, kiedy pod wpływem uszkodzenia nabłonka jelit rozwinęła się biegunka. Nasze studium sugeruje jednak, że probiotyki powinno się aplikować przed wystąpieniem objawów, a nawet przed rozpoczęciem radioterapii. Kluczową funkcją probiotyków - przynajmniej w tym scenariuszu - wydaje się bowiem zapobieganie urazom, a nie ułatwianie naprawy - wyjaśnia dr Matthew A. Ciorba.
      Uprzednio Stenson i inni wykazali, że probiotyki działają za pośrednictwem szlaku angażującego prostaglandyny i cyklooksygenazę 2 (COX-2). Podczas najnowszych eksperymentów odmierzone dawki LGG wprowadzano bezpośrednio do żołądka zwierząt. Okazało się, że bakterie chroniły nabłonek przewodu pokarmowego tylko wtedy, gdy były one w stanie wytwarzać COX-2. U niezdolnych do produkcji COX-2 zmutowanych gryzoni promieniowanie niszczyło komórki nabłonka tak samo jak u myszy z grupy kontrolnej, którym nie podawano probiotyku.
      W jelicie grubym komórki wytwarzające COX-2 migrują do miejsc urazu i asystują przy naprawie. W naszym badaniu ocenialiśmy tę reakcję w jelicie cienkim i odkryliśmy, że komórki, w których zachodzi ekspresja COX-2, mogą migrować z nabłonka do krypty, gdzie powstają nowe komórki nabłonka. Sądzimy, że ten mechanizm jest kluczowy dla efektu ochronnego - podkreśla Ciorba.
      Na myszy działały stosunkowo niskie dawki probiotyku, u ludzi mogłoby więc być podobnie. W przyszłości naukowcy zamierzają wyizolować z bakterii radioochronny czynnik. Wtedy nie trzeba by podawać pacjentom mikroorganizmów, ale syntetyczny odpowiednik ich "wynalazku".
    • By KopalniaWiedzy.pl
      Kanadyjczycy odkryli nową funkcję dobrze znanego enzymu, która pozwala uchronić organizm osoby z niedokrwistością przed uszkodzeniami narządów, a nawet śmiercią. Dr Greg Hare ze Szpitala św. Michała w Toronto podkreśla, że spostrzeżenia dotyczące neuronalnej syntazy tlenku azotu (oznaczanej jako nNOS lub NOS1) są niezmiernie ważne, ponieważ na świecie aż 1 osoba na 4 ma anemię.
      Anemia to niższa od normy wartość hemoglobiny lub erytrocytów. Przypomnijmy, że erytrocyty przenoszą tlen. Jest to możliwe dzięki hemoglobinie, która nietrwale wiąże się z tlenem.
      Enzym nNOS występuje w komórkach nerwowych. Wytwarza tlenek azotu(II), który w ośrodkowym układzie nerwowym jest neuromodulatorem (wpływa np. na pamięć), a ośrodkowym układzie nerwowym działa jak neuroprzekaźnik. Od jakiegoś czasu wiadomo, że ekspresja nNOS zwiększa się w wyniku lokalnego niedokrwienia i hipoksji, jednak dopiero teraz zespół Hare'a odkrył, że gdy pacjent ma niedokrwistość, nNOS zwiększa zdolność organizmu do reagowania/przystosowywania się do niskiego poziomu tlenu i sprawia, że życiodajny gaz jest skuteczniej dostarczany do tkanek.
      Kanadyjczycy zauważyli, że u anemicznych myszy stężenie nNOS wzrasta, a gdy zwierzęta pozbawi się tej izoformy syntazy, umierają przedwcześnie z wyższym poziomem hemoglobiny.
×
×
  • Create New...