Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ludzki gen zmienia śpiew myszy

Rekomendowane odpowiedzi

Gen umożliwiający ludziom mówienie wpływa na wokalizację także u myszy - udowadniają naukowcy z Instytutu Maxa Plancka. Opracowane przez nich zmodyfikowane genetycznie zwierzęta mogą posłużyć jako znakomity model do badań nad ewolucją mowy.

Badany gen, zwany FOXP2, stał się obiektem intensywnych badań po tym, jak stwierdzono, iż jego mutacja powoduje upośledzenie mówienia i rozumienia mowy. Dalsze badania wykazały, iż białkowy produkt tego genu należy on do tzw. czynników transkrypcyjnych, czyli białek regulujących aktywność innych genów. Niestety, eksperymenty na ludziach były, oczywiście, niemożliwe ze względów etycznych.

Próbą rozwiązania problemu było przeniesienie ludzkiej wersji FOXP2 do organizmu myszy. Było to dość ryzykowne, gdyż gryzonie pozbawione tego genu giną już po kilku tygodniach. Okazało się jednak, że wstawienie w jego miejsce genu ludzkiego jest możliwe, a zmodyfikowane zwierzęta przeżywają i nabierają nowych cech.

Najważniejszą z zaobserwowanych zmian było nabycie przez mysie neurony zdolności do szybkiego wyciszania własnej aktywności w reakcji na powtarzające się impulsy elektryczne o odpowiednich parametrach. Liczne badania z ostatnich lat sugerują, że cecha ta jest bardzo istotna dla procesów uczenia. 

Kolejną zaobserwowaną różnicą była zmiana barwy ultradźwiękowych nawoływań emitowanych przez samce gryzoni. Niestety, dotychczas nie udało się ustalić, jaką rolę mogłaby odgrywać taka zmiana, lecz najprawdopodobniej nie ma ona charakteru ewolucji w kierunku uporządkowanej mowy. Jak uważa szef zespołu badającego to zagadnienie, Wolfgang Enard, wokalizacje [zmodyfikowanych genetycznie myszy] są co najwyżej podobne do płaczu dziecka.

Choć do rozwiązania pozostaje jeszcze wiele zagadek, wyhodowanie zwierząt zawierających ludzki gen FOXP2 stanowi istotny krok naprzód. Wykorzystanie tych zwierząt do dalszych badań ułatwi pracę nad poszukiwaniem mechanizmu odpowiedzialnego za ewolucję mowy u ludzi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

ja tam był się jednak trochę bał takich badań. Jak się będą czuli badacze, gdy ta biedna mysz nauczy się mówić i powie: "Co mi robicie sadyści!?!" ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nawet, gdy zwierzęta nie mówią, praca jest mało przyjemna i zostawia uraz.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Złożona ludzka mowa mogła wyewoluować dzięki życiu na drzewach, uważa doktor Adriano Lameira z University of Warwick. Specjalizuje się on w badaniu początków języka i jest autorem pierwszej analizy ewolucji spółgłosek. Wynika z niej, wbrew oczekiwaniom, że nasi przodkowie mogli prowadzić bardziej nadrzewny sposób życia, niż nam się wydaje.
      W ludzkich językach spotykamy pokaźną liczbę spółgłosek. Od 6 w języku rotokas po 84 w wymarłym ubychijskim. Spółgłoski to dźwięki języka mówionego, które powstają w wyniku częściowego lub całkowitego zablokowania przepływu powietrza przez aparat mowy. Zdecydowana większość naczelnych niemal nie używa dźwięków przypominających spółgłoski. Ich zawołania składają się z dźwięków przypominających samogłoski.
      Doktor Lameira, chcąc poznać początki spółgłosek, przejrzał dostępną literaturę i porównał wzorce dźwięków wydawanych przez człowiekowate. Do tej rodziny, obok ludzi – którymi Lameira się nie zajmował – należą orangutany, szympansy, bonobo i goryle. Okazało się, że – w przeciwieństwie do innych naczelnych – małpy te używają dźwięków przypominających spółgłoski, ale ich wykorzystanie jest bardzo nierównomiernie rozłożone pomiędzy gatunkami.
      Goryle, na przykład, używają zawołania przypominającego spółgłoskę, ale jest ono rozpowszechnione tylko w pewnych populacjach. Niektóre grupy szympansów posługują się jednym czy dwoma zawołaniami jak spółgłoski powiązanymi z konkretnym zachowaniem, ale takie zawołania przy tym zachowaniu rzadko zdarzają się wśród innych grup, mówi uczony.
      Tymczasem orangutany używają pełnego bogactwa zawołań podobnych do spółgłosek, jest ono widoczne w różnych populacjach i dotyczy różnych zachowań, podobnie jak ma to miejsce w ludzkiej mowie. Ich repertuar wokalny jest pełen kliknięć, cmoknięć, parsknięć, prychnięć czy dźwięków przypominających pocałunki, dodaje.
      Uczony od 18 lat obserwuje orangutany w naturalnym środowisku i uważa, że to ich nadrzewny tryb życia i sposób zdobywania pożywienia mogą wyjaśniać bogactwo wydawanych przez nich dźwięków przypominających spółgłoski. Wszystkie małpy to zręczni zbieracze. Wypracowały złożone mechanizmy zdobywania trudno dostępnej żywności, zamkniętej np. w orzechach. Jej zdobycie wymaga użycia rąk lub narzędzi. Goryle czy szympansy potrzebują stabilnej pozycji na ziemi, by dostać się do takiego pożywienia i używać narzędzi. Jednak orangutany w dużej mierze żyją na drzewach, tam zdobywają pożywienie, a co najmniej jedna z kończyn jest ciągle zajęta zapewnianiem zwierzęciu stabilności. Z tego też powodu u orangutanów rozwinęła się większa kontrola nad wargami, językiem i szczęką. Mogą używać ust jako dodatkowego narzędzia. Znane są np. z tego, że za pomocą samych warg potrafią obrać pomarańczę. Ich kontrola motoryczna nad ustami jest znacznie większa niż u małp afrykańskich, jest niezbędną częścią ich biologii, mówi Lameira. Skutkiem ubocznym lepszej kontroli nad wargami, językiem i szczęką jest zaś zdolność do artykułowania dźwięków podobnych do spółgłosek. To zaś może oznaczać, że nasi przodkowie byli bardziej zależni od drzew, niż obecnie sądzimy.
      Dlaczego więc u innych żyjących na drzewach małp nie pojawiła się zdolność do wydawania dźwięków podobnych do spółgłosek? Uczony wyjaśnia, że są to mniejsze zwierzęta, do tego posiadające ogony i żywiące się w nieco inny sposób, zatem nie potrzebują aż tak zręcznych ust i języków jak orangutany. Praca Lameiry jest dostępna na łamach Trends in Cognitive Sciences.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dotychczas sądzono, że struktury w naszym mózgu, które umożliwiły rozwój mowy, pojawiły się w nim przed 5 milionami lat. Teraz międzynarodowy zespół naukowy przesunął ten termin i to znacznie. Europejscy i amerykańscy uczeni twierdzą, że początków takich struktur należy szukać co najmniej 25 milionów lat temu. Odkrycie opisano na łamach Nature.
      Znalezienie takiej struktury jest dla neurologów jak znalezienie skamieniałości, która rzuca nowe światło na ewolucję. Musimy jednak pamiętać, że mózgi nie ulegają fosylizacji. Dlatego też eksperci muszą próbować odtwarzać ewolucję mózgu porównując mózgi obecnie żyjących naczelnych i człowieka.
      Kluczową strukturą dla rozwoju mowy jest pęczek łukowaty (AF). To wiązka włókien kojarzeniowych rozciągających się od płata skroniowego po płat czołowy. Zespół z USA, Wielkiej Brytanii i Niemiec wykorzystał ogólnodostępne skany mózgu człowieka, szympansa i makaka królewskiego, a następnie przeprowadził analizę odpowiednich obszarów. Uczeni odkryli istnienie homologicznej struktury rozpoczynającej się w korze słuchowej.
      Wiadomo, że szympansy posiadają strukturę homologiczną (czyli mającą wspólne z człowiekiem pochodzenie ewolucyjne) do ludzkiego pęczka łukowatego, ale istnieją już spory co do tego, że podobna struktura występuje u makaków. Ostatnie dowody naukowe wskazują, że różnicowanie się pęczka łukowatego jest związane z rozrastaniem się zakrętu skroniowego środkowego (MTG). To wyróżniająca się struktura u ludzi, która jest wyraźnie widoczna też u szympansów, ale nie stwierdzono jej u nieczłowiekowatych.
      Autorzy najnowszych badań postanowili sprawdzić, czy struktura homologiczna do AF może u nieczłowiekowatych istnieć pomimo braku u nich MTG. Mogliśmy tylko przypuszczać, ale nie byliśmy pewni, czy u nieczłowiekowatych istnieją homologiczne struktury, co u człowieka. Przyznam, że byłem zaskoczony ich odkryciem, mówi profesor Chris Petkov z Newcastle University.
      Badania te rzucają nowe światło na ewolucyjne początku AF. Wskazują na fragment AF związany ze zmysłem słuchu i dowodzą istnienia homologicznej struktury u szympansów i makaka królewskiego, czytamy w opublikowanej pracy. Okazało się też, że o ile u małp nieczłowiekowatych AF jest dość symetryczna, to u ludzi występuje silna asymetria, z bardziej rozwiniętą lewą stroną struktury, która odgrywa zasadniczą rolę w rozwoju mowy.
      Biorąc pod uwagę fakt, że asymetria taka występuje też u szympansów, można stwierdzić, że struktury w mózgu potrzebne do pojawienia się mowy zaczęły przybierać ostateczną formę u wspólnego przodka człowieka i małp człowiekowatych, z późniejszym jeszcze różnicowaniem u naszych bezpośrednich przodków. Jednak obecne badania wskazują, że wspólni przodkowie małp i małp człekokształtnych posiadali symetryczną strukturę łączącą części płata skroniowego odpowiedzialne za słuch z dolną częścią płata czołowego. U ludzi w tych obszarach znajdują się dwie niezwykle ważne dla rozwoju mowy struktury – ośrodek Wernickiego i ośrodek Broki.
      Nasze badania przesunęły pojawienie się prototypu AF odpowiedzialnego za rozpoznawanie mowy do czasu ostatniego wspólnego przodka ludzi i makaków (około 25 milionów lat temu), podczas gdy do niedawna sądzono, że początków tych struktur należy szukać u ostatniego wspólnego przodka ludzi i szympansów sprzed około 5 milionów lat, stwierdzili autorzy odkrycia. Nasze obserwacje zgadzają się też z hipotezą, że zdolność do przetwarzania języka rozwinęła się ze struktur odpowiedzialnych za słuch, dodają.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Panzee, szympansica wychowywana od 8. dnia życia przez prymatologów z Uniwersytetu Stanowego Georgii, potrafi rozpoznawać syntetyczną mowę nawet wtedy, gdy generowane komputerowo słowa są wybrakowane albo zniekształcone.
      Oznacza to, że szympansy dysponują rozwiniętą zdolnością rozpoznawania słów i że musiała ona prawdopodobnie występować także u wspólnego przodka człowieka i tych małp.
      Naukowcy od zawsze traktują szympansicę jak człowieka. Mówią do niej, nauczyli ją też korzystania z symboli zwanych leksigramami. W rezultacie Panzee uzyskała biegłość w rozumieniu ok. 130 angielskich słów – opowiada doktorantka Lisa Heimbauer.
      Hipoteza "Speech is Special" zakłada, że tylko ludzie są w stanie wytwarzać mowę dzięki szczególnej budowie aparatu artykulacyjnego i przetwarzać ją za pomocą wyspecjalizowanego modułu poznawczego. Miały tego dowodzić badania demonstrujące, że ludzie są w stanie zrozumieć mowę nawet wtedy, gdy jest bardzo zniekształcona (np. w wyniku zmiany częstotliwości) lub zdekompletowana. Istnieje jednak również alternatywna teoria, której twórcy i zwolennicy uważają, że przetwarzanie słuchowe przebiega podobnie u wszystkich ssaków, dlatego zwierzęta rozumieją mowę. By stwierdzić, jak jest naprawdę i rozstrzygnąć zadawniony naukowy spór, Heimbauer i jej koledzy z uczelni Michael Beran i Michael Owren postanowili przetestować umiejętności Panzee.
      Amerykanie odtwarzali szympansicy słowa z wokodera, czyli urządzenia do syntezy dźwięków. Miały one zmienioną częstotliwość. Małpa słuchała także mowy sinusoidalnej (trzy pierwsze formanty są zamieniane na sygnały sinusoidalne o częstotliwościach odpowiadającym tym formantom; postrzeganie dźwięków mowopodobnych jako mowy jest uznawane za przejaw istnienia wyspecjalizowanego modułu kognitywnego, o którym wspominaliśmy na początku). Okazało się, że Panzee rozumie oba zniekształcone rodzaje mowy częściej, niż miałoby to miejsce w przypadku losowych trafień. Wg tria naukowców, umożliwiło jej to wychowanie. Opisane zjawisko akcentuje wagę wczesnych doświadczeń w kształtowaniu percepcji mowy. Wiele wskazuje na to, że ludzki moduł percepcji/przetwarzania mowy jest udoskonaloną wersją modułu obecnego u wspólnego przodka szympansa i człowieka.
    • przez KopalniaWiedzy.pl
      Jeśli chcemy przekonać kogoś do własnego zdania, wyperswadować coś czy skłonić do postępowania zgodnego z naszymi planami, najlepiej mówić w umiarkowanym tempie, robić częste przerwy i nie być nadmiernie pobudzonym.
      Naukowcy z Instytutu Badań Społecznych University of Michigan przeanalizowali ok. 1400 rozmów telefonicznych, podczas których próbowano zachęcić ludzi do wzięcia udziału w sondzie. Najgorzej radzili sobie ankieterzy, którzy mówili bardzo szybko, nie robili pauz i byli zbyt ożywieni.
      W ramach studium amerykańscy psycholodzy analizowali nagrania komunikatów wprowadzających w wykonaniu 100 kobiet i mężczyzn. Zwracali szczególną uwagę na tempo mówienia, fluencję słowną oraz wysokość głosu i porównywali je ze skutecznością ankieterów w przekonywaniu rozmówcy do wzięcia udziału w wywiadzie. Okazało się, że badani wymawiający ok. 3,5 słowa na sekundę wypadali o wiele lepiej od ankieterów wypowiadających się bardzo wolno lub bardzo szybko.
      Szef zespołu Jose Benki wyjaśnia, że osoby mówiące zbyt szybko są postrzegane jako kłamcy, a mówiące bardzo wolno jako niezbyt inteligentne lub nadmiernie pedantyczne. Studium ujawniło także, że zbyt duża zmienność tembru głosu brzmi, wg odbiorców, sztucznie, jak gdyby ankieter za bardzo się starał.
      Akademicy z University of Michigan ustalili też, że najlepiej sprawdzali się ankieterzy, którzy robili częste pauzy (ok. 4-5 razy na minutę). Idealnie płynna mowa może być bowiem uznawana za wyuczoną na pamięć kwestię.
    • przez KopalniaWiedzy.pl
      Skupiając się na tym, czego słuchamy, mózg wycisza wszystkie zakłócające dźwięki. Sytuacja wygląda jednak zupełnie inaczej, gdy słyszymy i monitorujemy swoją własną mowę na tle hałasu. Okazuje się, że dysponujemy całą siecią ustawień, która pozwala nam wybiórczo wyciszyć i pogłośnić wydawane i słyszane dźwięki.
      Naukowcy z Uniwersytetu Kalifornijskiego w Berkeley i San Francisco oraz z Uniwersytetu Johnsa Hopkinsa śledzili aktywność elektryczną mózgów pacjentów z padaczką. Odkryli, że neurony jednej części kory słuchowej się wygaszały, a w innych się rozświetlały.
      Wcześniejsze badania wykazały, że małpy dysponują wybiórczym układem słuchowym, który pozwala im "podkręcić" wydawane przez siebie zawołania związane z rozrodem, pokarmem czy alarmowe. Dotąd nie było jednak wiadomo, jak taki system jest zorganizowany u ludzi.
      Zwykliśmy myśleć, że ludzki układ słuchowy jest w dużej mierze hamowany podczas mówienia, ale my odkryliśmy ciasno upakowane placki kory o bardzo różnej wrażliwości na własną mowę, co daje znacznie bardziej złożony obraz – tłumaczy Adeen Flinker, doktorant z Berkeley.
      Znaleźliśmy dowody na istnienie milionów neuronów wyładowujących się naraz za każdym razem, gdy słyszymy jakiś dźwięk. Znajdują się one tuż obok milionów neuronów ignorujących zewnętrzne dźwięki, ale wyładowujących się razem za każdym razem, gdy sami coś mówimy. Taka mozaika reakcji może odgrywać ważną rolę w tym, jak rozróżniamy własną mowę od mowy innych.
      Choć studium nie daje odpowiedzi na pytanie, po co tak bacznie śledzimy własną mowę, Flinker sądzi, że da się wskazać kilka powodów. Na pewno przydaje się to podczas nauki języka, do monitorowania wypowiadanych kwestii oraz dostosowywania się do rozmaitych głośnych środowisk. "Bez względu na to, czy chodzi o naukę nowego języka, czy rozmowę ze znajomymi w hałaśliwym barze, musimy słyszeć, co mówimy i zmieniać dynamicznie naszą mowę, dostosowując się do wymogów otoczenia".
      Amerykanin przypomina, że schizofrenicy nie potrafią odróżnić swoich wewnętrznych głosów od głosów innych ludzi, co sugeruje, że nie mają opisywanego wybiórczego mechanizmu słuchowego.
      Poszczególne regiony mózgu odpowiadają za kontrolę innej głośności, a są od siebie oddalone o zaledwie kilka milimetrów. Uzyskane przez akademików wyniki pozwolą opracować bardziej szczegółowe mapy kory słuchowej, wykorzystywane podczas operacji na mózgu.
      W ramach opisywanego eksperymentu naukowcy śledzili aktywność elektryczną zdrowej tkanki mózgu hospitalizowanych epileptyków. Pacjenci mieli powtarzać słyszane słowa i samogłoski. Porównano sygnały elektryczne związane z mówieniem i słyszeniem. Dzięki temu ustalono, że niektóre regiony kory słuchowej są mniej aktywne w czasie mówienia, podczas gdy inne utrzymują lub zwiększają swoją aktywność.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...