Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Blokada "genetycznego przełącznika" ratuje mięśnie

Rekomendowane odpowiedzi

Zastąpienie jednego z białek budujących mięśnie szkieletowe jego odpowiednikiem występującym w sercu pozwala na zachowanie funkcji motorycznych organizmu - udowadniają australijscy badacze. Wywołanie analogicznego efektu w organizmie człowieka może uratować osoby cierpiące na poważne zaburzenia funkcji mięśni.

Obiektem studium, prowadzonego przez zespół pod kierownictwem dr Kristen Nowak, były białka z rodziny aktyn. Proteiny te, kluczowe dla funkcjonowania mięśni, występują w organizmie w kilku różnych wariantach. Jeden z nich, zwany sercowym, w czasie życia płodowego występuje we wszystkich mięśniach szkieletowych oraz w mięśniu sercowym. Pod koniec ciąży zanika on jednak niemal zupełnie i pozostaje obecny wyłącznie w sercu. Zamiast niego, mięśnie szkieletowe zaczynają syntetyzować inny rodzaj aktyny, zwany szkieletowym.

Jeżeli w komórkach dojrzewającego płodu dojdzie do mutacji genu kodującego aktynę "szkieletową", zwanego ACTA1, u rodzącego się dziecka można się spodziewać poważnych zaburzeń, prowadzących ostatecznie do śmierci w ciągu kilku pierwszych miesięcy życia. Badacze zaczęli w związku z tym zastanawiać się, czy zachowanie aktywności genu kodującego aktynę "sercową", noszącego nazwę ACTC, mogłoby zapobiec schorzeniom.

Eksperyment zaproponowany przez dr Nowak wydawał się z góry skazany na niepowodzenie. Od dawna wiadomo bowiem, że przejście z ekspresji genu ACTA1 na ACTC zachodzi w organizmach wszystkich owodniowców. Zgodnie z teorią ewolucji sugerowało to, że jest to cecha korzystna i jej zachowanie świadczy o ważności tego procesu. Okazało się jednak, że jest zupełnie inaczej.

Na potrzeby eksperymentu skrzyżowano myszy niewytwarzające aktyny "szkieletowej" z osobnikami zmodyfikowanymi genetycznie syntetyzującymi ludzką wersję aktyny "sercowej" zarówno w typowym miejscu jej występowania, jak i w mięśniach szkieletowych. 

Skrzyżowane gryzonie nie tylko nie ginęły po paru dniach od urodzenia, jak działo się w przypadku osobników o nieaktywnym genie kodującym aktynę "mięśniową", lecz także zachowywały sprawność fizyczną na poziomie porównywalnym ze zwierzętami zdrowymi. I choć pojedyncze włókna mięśni szkieletowych były u zwierząt skrzyżowanych nieznacznie słabsze, szybkość i wytrzymałość takich myszy była nawet lepsza, niż u osobników zdrowych.

Zrozumienie procesu "przełączania się" mięśni z wykorzystywania jednego typu aktyny na drugi ułatwi badania nad ciężkimi chorobami dotykającymi noworodki. Co więcej, eksperyment przeprowadzony przez zespół dr Nowak pozwoli na opracowanie mysiego modelu tych schorzeń, dzięki czemu zdobywanie wiedzy na ich temat będzie znacznie prostsze. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wielokrotnie mogliśmy się przekonać, że jeśli nie używamy jakichś mięśni, to one zanikają. Jeszcze do niedawna naukowcy sądzili, że wraz z zanikaniem mięśni zanikają też jądra komórek, które je tworzyły. Jednak z najnowszego artykułu opublikowanego we Frontiers in Physiology dowiadujemy się, że jądra komórkowe, które zyskaliśmy podczas treningu, zostają zachowane, nawet jeśli włókna mięśniowe zanikają.
      Te pozostałe jądra działają jak „pamięć” mięśni, dzięki której, gdy wrócimy do treningu, szybciej jesteśmy w stanie mięśnie odzyskać. Naukowcy sądzą, że mechanizm ten ma zapobiegać zbytniej utracie masy mięśniowej w późniejszym wieku, gdy nie jesteśmy już tak aktywni, co w wieku nastoletnim. Wskazuje to również, że łatwo jest przeoczyć sportowca, który oszukuje i wspomaga rozwój mięśni środkami dopingującymi.
      Największe komórki w ciele człowieka, to właśnie komórki mięśniowe. W mięśniach poprzecznie prążkowanych tworzą one syncytia, czyli więlojądrowe komórki powstające poprzez połączeni luźnych komórek jednojądrowych. Syncytia zachowują się jak jedna wielka komórka. Syncytia występują w sercu, kościach czy łożysku. Jednak największe komórki i największe syncytia znajdziemy w naszych mięśniach, mówi profesor Lawrence Schwartz z University of Massachusetts.
      Wzrostowi mięśni towarzyszy dodawanie nowych jąder komórkowych z komórek macierzystych. Pozwala to na zaspokojenie zapotrzebowania rosnących komórek. To doprowadziło do pojawienia się hipotezy, każde jądro kontroluje ściśle zdefiniowaną objętość cytoplazmy, więc gdy masa mięśniowa się zmniejsza, czy to wskutek choroby czy ich nieużywania, zmniejsza się też liczba jąder komórek mięśni, dodaje uczony. Przypuszczenia takie miały o tyle mocne podstawy, że naukowcy badający tkankę mięśniową ulegającą atrofii donosili i obecnych w nich rozpadających się jądrach komórkowych. Dopiero jednak najnowsze techniki badawcze pozwoliły stwierdzić, że te rozpadające się jądra komórkowe nie pochodzą z komórek mięśni, ale z innych komórek, które pojawiły się w przeżywającej problemy tkance mięśniowej.
      Dwa niezależne badania, jedno przeprowadzone na gryzoniach, a drugie na owadach, wykazały, że podczas atrofii włókien mięśniowych nie dochodzi do utraty jąder komórkowych, stwierdza Schwartz w swoim artykule. Niewykluczone, że jądro komórkowe, które pojawiło się w mięśniach, pozostaje w nich na zawsze. Profesor Schwartz nie jest zaskoczony takimi wynikami. Mięśnie ulegają uszkodzeniu podczas intensywnych ćwiczeń, często zachodzą w nich zmiany związane z dostępnością pożywienia i innymi czynnikami środowiskowymi prowadzącymi do atrofii. Nie przetrwałyby długo, gdyby przy każdym takim zdarzeniu traciły jądra komórkowe, stwierdza.
      Skoro więc jądra komórkowe pozostają, to wiemy już, dlaczego łatwo jest odzyskać raz utraconą tkankę mięśniową. Dobrze udokumentowany jest fakt, że jest znacznie łatwiej odzyskać pewien poziom utraconej masy mięśniowej niż ją zbudować od podstaw, nawet jeśli przez długi czas nie ćwiczyliśmy. Innymi słowy, zamiast stwierdzać, że nieużywane mięśnie zanikają, powinniśmy powiedzieć, że nieużywane mięśnie zanikają, dopóki nie zaczniemy ich znowu używać.
      Odkrycie to pokazuje, jak ważne jest zbudowanie masy mięśniowej w młodości. Wówczas jesteśmy bardziej aktywni fizycznie, a wzrost masy mięśniowej jest wspomagany poprzez hormony, większy apetyt i duże zapasy komórek macierzystych. To idealny moment, by zbudować sobie zapas jąder komórkowych w mięśniach. Mogą się one przydać po wielu latach, gdy będziemy potrzebowali szybko nadrobić utraconą masę mięśniową, co pomoże nam w zachowaniu dobrego stanu zdrowia i niezależności w sędziwym wieku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Miomezyna to małe białko, które jest jednym z czynników stabilizujących miofibryle - włókienka kurczliwe mięśni. Wykorzystując kilka różnych technik, naukowcy z European Molecular Biology Laboratory (EMBL) w Hamburgu wykazali, że w pracujących mięśniach elastyczna część tego białka rozciąga się aż 2,5-krotnie.
      Ogony dwóch cząsteczek miomezyny tworzą elastyczne mostki między pęczkami włókien mięśniowych. Na każdym z ogonów znajdują się domeny immunoglobulinopodobne rozmieszczone na helisie alfa - trójwymiarowej strukturze w kształcie taśmy skręconej wzdłuż poprzecznej osi (całość przypomina koraliki nanizane na nitkę). Gdy białko jest rozciągane, wstęga się rozplata.
      Podczas badań zachowania miomezyny Niemcy posłużyli się krystalografią rentgenowską, niskokątowym rozpraszaniem promieniowania X (SAXS – Small Angle X-ray Scattering), a także mikroskopami elektronowym i sił atomowych.
      W przyszłości zespół Matthiasa Wilmannsa chce odtworzyć budowę całego filamentu miomezynowego oraz zbadać jego działanie w żywym organizmie.
       
       
    • przez KopalniaWiedzy.pl
      W artykule, który ukazał się w styczniowym numerze pisma Cell Metabolism, naukowcy opisali związek kluczowy dla wzrostu ćwiczonych i używanych mięśni. Surowiczy czynnik reakcji (ang. serum response factor, Srf), bo o nim mowa, przekłada sygnał mechaniczny na chemiczny.
      Sygnał z włókien mięśniowych kontroluje zachowanie komórek progenitorowych i ich udział we wzroście mięśnia - wyjaśnia Athanassia Sotiropoulos z Inserm. Komórki progenitorowe przypominają komórki macierzyste, ale ze względu na częściową specjalizację mogą się przekształcić nie w jakikolwiek, lecz w jeden lub co najwyżej kilka typów komórek.
      Wcześniejsze badania Francuzów na myszach i ludziach wykazały, że stężenie Srf spada z wiekiem, dlatego akademicy przypuszczali, że jest to przyczyną atrofii mięśni podczas starzenia. Mechanizm działania czynnika okazał się jednak inny niż zakładano. Naukowcy wiedzieli, że Srf kontroluje aktywność wielu genów włókien mięśniowych, ale nie mieli pojęcia, że potrafi wpływać na działanie mięśniowych komórek satelitarnych (komórek progenitorowych, które biorą udział w regeneracji uszkodzonego mięśnia).
      Podczas eksperymentów Sotiropoulos zademonstrowała, że myszy, u których w mięśniach nie występował Srf, pod wpływem obciążenia nie rozbudowywały muskulatury. Do komórek satelitarnych nie docierał sygnał, aby się dzieliły i łączyły z istniejącymi włóknami. Francuzi sądzą, że trudno byłoby wyznaczyć optymalną dawkę surowiczego czynnika reakcji, dlatego lepiej regulować kontrolowane przez niego prostaglandyny czy interleukiny.
      Srf działa m.in. na gen COX2 (cyklooksygenazy-2). Ponieważ inhibitorem cyklooksygenazy-2 jest choćby popularny środek przeciwbólowy i przeciwzapalny ibuprofen, warto się zastanowić, czy nie hamuje on przypadkiem regeneracji mięśni.
    • przez KopalniaWiedzy.pl
      Wydajność mięśni zależy m.in. od zdolności wykorzystania węglowodanów jako źródła energii. Ćwiczenia wpływają na nią korzystnie, a otyłość czy przewlekłe choroby wręcz przeciwnie. Naukowcy z Sanford-Burnham Medical Research Institute odkryli mechanizm, dzięki któremu można u myszy przeprogramować geny metaboliczne mięśni, wpływając na ich umiejętność zużywania cukrów. Niewykluczone, że w ten sposób będzie się w przyszłości zapobiegać bądź leczyć cukrzycę, zespół metaboliczny i otyłość.
      Zasadniczo te transgeniczne myszy są w stanie magazynować węglowodany i spalać je w stopniu występującym tylko u wytrenowanych sportowców - wyjaśnia dr Daniel P. Kelly.
      Mięśnie wyhodowanych przez Amerykanów myszy wytwarzają białko PPARβ/δ. Jest ono receptorem jądrowym, a więc czynnikiem transkrypcyjnym, który przez przyłączanie ligandów reguluje ekspresję genów metabolicznych mięśni w odpowiedzi na bodźce zewnętrzne.
      Wcześniejsze badania pokazały, że gryzonie z wyższym poziomem PPARβ/δ w mięśniach cechuje większa wydolność wysiłkowa. Jak napisali w artykule opublikowanym na łamach Genes & Development członkowie zespołu Kelly'ego, mięśnie zwierząt z grupy PPARβ/δ przewyższają mięśnie zwykłych zwierząt pod względem zdolności wychwytywania cukru z krwiobiegu, a także magazynowania go i wykorzystywania w formie energii. Myszy PPARβ/δ są supersprawne. W porównaniu do przeciętnych gryzoni, biegną dłużej i szybciej, a w ich mięśniach powstaje mniej kwasu mlekowego.
      Główną rolę w mechanizmie odkrytym przez ekipę z Sanford-Burnham Medical Research Institute odgrywają kompleksy tworzone przez 3 białka: 1) PPARβ/δ, 2) AMPK (kinazę aktywowaną 5'AMP) oraz 3) czynnik transkrypcyjny MEF2A, który pomaga w aktywowaniu miocytospecyficznych genów. Wspólnie białka włączają ekspresję genu kodującego dehydrogenazę mleczanową - enzym kierujący cukropochodne metabolity do mitochondriów, gdzie możliwe jest całkowite spalanie "surowca".
    • przez KopalniaWiedzy.pl
      Jeszcze w łonie matki dzieci zaczynają jak aktorzy ćwiczyć mimikę twarzy: marszczą nos, unoszą brwi, wydymają usta. W miarę rozwoju płodu ruchy twarzy stają się coraz bardziej złożone.
      Nadja Reissland podkreśla, że choć wcześniej wiedziano o płodowej mimice, nikt nie śledził postępów w zakresie jej złożoności. Badacze skorzystali z dobrodziejstw ultrasonografii 4D. W okresie między 24. a 35. tygodniem ciąży od czasu do czasu robili zdjęcia dwóm dziewczynkom. Dzięki temu zauważyli, jak pojedyncze, niezwiązane ze sobą ruchy stają się stopniowo złożonymi kombinacjami, powszechnie kojarzonymi z konkretnymi wyrazami twarzy.
      Brytyjczycy śledzili 19 rodzajów ruchów mięśni twarzy (unoszenie brwi, otwieranie ust itp.). Dodatkowo analizowali 2 zestawy ruchów: jeden związany ze śmiechem, a drugi z płaczem. Okazało się, że z czasem kombinacje, które miały je oznaczać, stawały się coraz bardziej złożone.
      W 24. tygodniu płody wykonywały głównie izolowane ruchy, np. rozchylały wargi. Potem coraz częściej łączyły je z innymi ruchami. Do 35. tygodnia ciąży liczba związanych ze śmiechem/płaczem kombinacji 3-4-elementowych przewyższała liczbę połączeń 1-2-elementowych. Podobny trend występował w odniesieniu do 19 analizowanych typów ruchów; tutaj łączenie także obserwowano coraz częściej i na coraz większą skalę.
      Reissland twierdzi, że wyrazu twarzy nie należy mylić z doświadczaniem danej emocji. Na razie [dzieci] nie mają koniecznego do tego aparatu poznawczego. Brytyjka powołuje się na przykład ssania kciuka czy naśladowania ruchów oddechowych w łonie matki. Wszystko to ćwiczenia umiejętności niezbędnych po narodzinach: jedzenia, oddychania lub funkcjonowania w społecznym świecie.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...