Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Problem z tranzystorami

Recommended Posts

Obowiązująca przez dziesiątki lat teoria dotycząca zakłóceń występujących w tranzystorach prawdopodobnie jest fałszywa. Może to oznaczać, że wkrótce nie będziemy w stanie produkować mniejszych i bardziej wydajnych układów scalonych dopóty, dopóki nie powstanie prawdziwa teoria wyjaśniająca szumy.

Jason Campbell i jego zespół z Narodowego Instytutu Standardów i Technologii badali fluktuacje pomiędzy stanami on i off w coraz mniejszych tranzystorach. Odkryli w ten sposób, że obowiązujący od dziesiątków lat standardowy model wyjaśniający zakłócenia nie pasuje do faktów. Teoria zwana modelem tunelowania elastycznego mówi, że wraz ze zmniejszaniem się rozmiarów tranzystora, częstotliwość zakłóceń jest coraz większa. Jednak Campbell i jego koledzy wykazali, że nawet w tranzystorach o rozmiarach jednego nanometra częstotliwość ta jest ciągle taka sama. Oznacza to, że cały model wyjaśniający to zjawisko jest nieprawidłowy. Dotychczas nie stanowiło to większego problemu ze względu na spore rozmiary tranzystorów. Te jednak bardzo szybko stają się coraz mniejsze i wkrótce przemysł może natknąć się na problem, z którym sobie nie poradzi, gdyż nie będzie wiadomo jak. Jest to szczególnie ważne w tranzystorach o małej mocy, gdyż w ich przypadku fluktuacje pomiędzy on i off są szczególnie duże.

To poważna przeszkoda na drodze rozwoju tranzystorów dla zastosowań wymagających małej mocy. Musimy zrozumieć na czym polega problem, zanim go naprawimy. Kłopot w tym, że w tej chwili nie mamy pojęcia co się dzieje - mówi Campbell. 

Share this post


Link to post
Share on other sites

niech mi to ktos wyjasni, bardzo prosze, bo jak dla mnie to chyba dobrze, ze nie ma zaklucen ;]

 

Częstotliwość nie rośnie, a nie siła/ilość zakłóceń; ta rośnie tym bardziej, im mniejsze są tranzystory.

 

Dlatego naukowcy chcą się dowiedzieć, czemu te zakłócenia powstają - żeby im zapobiec :-)

 

Do autora: w artykule brakuje informacji, że te zakłócenia są coraz silniejsze przy postępującej miniaturyzacji. Jest tylko o wzroście częstotliwości, który jest nieprawdziwy, i o rosnącym problemie miniaturyzacji. Gdybym sobie nie uzupełnił tego artykułu wiedzą z zewnątrz, to też bym miał problemy ze zrozumieniem tego artykułu.

Share this post


Link to post
Share on other sites

Z artykułu przecież wynika jasno, że niezależnie od rozmiaru tranzystora - częstotliwość zakłóceń wynikających z przełączania stanów okazała się być stała, wbrew powszechnym przewidywaniom. Pozorny wzrost siły zakłóceń wynika więc z większej "ekologiczności" (mniejszej mocy), która z kolei wynika ze spadającej wytrzymałości izolatorów w coraz mniejszej skali - czyli aby elektrony nie przeskakiwały między ścieżkami.

Share this post


Link to post
Share on other sites

Z artykułu przecież wynika jasno, że niezależnie od rozmiaru tranzystora - częstotliwość zakłóceń wynikających z przełączania stanów okazała się być stała, wbrew powszechnym przewidywaniom. Pozorny wzrost siły zakłóceń wynika więc z większej "ekologiczności" (mniejszej mocy), która z kolei wynika ze spadającej wytrzymałości izolatorów w coraz mniejszej skali - czyli aby elektrony nie przeskakiwały między ścieżkami.

 

Tak, ale nie znalazłem zdania, gdzie pokazane jest dosłownie (a nie w domyśle), że mniejszy rozmiar = większe zakłócenia -> ta sama energia silniej działa na mniejsze konstrukcje. Jest tylko napisane, że zależność wielkość/częstotliwość jest nieprawdziwa.

Share this post


Link to post
Share on other sites

No bo właśnie taką zależność, w sposób stricte, obalono. ;)

PS. tu nie chodzi także o częstotliwość pracy obwodu, a o częstotliwość zakłóceń.

Share this post


Link to post
Share on other sites

No bo właśnie taką zależność, w sposób stricte, obalono. ;)

PS. tu nie chodzi także o częstotliwość pracy obwodu, a o częstotliwość zakłóceń.

 

No tak. Ale obwód generuje pewną ilość zakłóceń o danej sile. Im bardziej skomplikowany obwód, tym ta siła silniej zakłóca. Tego nie ma wyjaśnionego w artykule, a nie każdy to wie.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Wynikiem współpracy uczonych z Purdue University, University of New South Wales i University of Melbourne jest najmniejszy tranzystor na świecie. Urządzenie zbudowane jest z pojedynczego atomu fosforu. Tranzystor nie tyle udoskonali współczesną technologię, co pozwoli na zbudowanie zupełnie nowych urządzeń.
      To piękny przykład kontrolowania materii w skali atomowej i zbudowania dzięki temu urządzenia. Pięćdziesiąt lat temu gdy powstał pierwszy tranzystor nikt nie mógł przewidzieć, jaką rolę odegrają komputery. Teraz przeszliśmy do skali atomowej i rozwijamy nowy paradygmat, który pozwoli na zaprzęgnięcie praw mechaniki kwantowej do dokonania podobnego jak wówczas technologicznego przełomu - mówi Michelle Simmons z University of New South Wales, która kierowała pracami zespołu badawczego.
      Niedawno ta sama grupa uczonych połączyła atomy fosforu i krzem w taki sposób, że powstał nanokabel o szerokości zaledwie czterech atomów, który przewodził prąd równie dobrze, jak miedź.
      Gerhard Klimeck, który stał na czele grupy uczonych z Purdue prowadzących symulacje działania nowego tranzystora stwierdził, że jest to najmniejszy podzespół elektroniczny. Według mnie osiągnęliśmy granice działania Prawa Moore’a. Podzespołu nie można już zmniejszyć - powiedział.
      Prawo Moore’a stwierdza, że liczba tranzystorów w procesorze zwiększa się dwukrotnie w ciągu 18 miesięcy. Najnowsze układy Intela wykorzystują 2,3 miliarda tranzystorów, które znajdują się w odległości 32 nanometrów od siebie. Atom fosforu ma średnicę 0,1 nanometra. Minie jeszcze wiele lat zanim powstaną procesory budowane w takiej skali. Tym bardziej, że tranzystor zbudowany z pojedynczego atomu ma bardzo poważną wadę - działa tylko w temperaturze -196 stopni Celsjusza. Atom znajduje się w studni czy też kanale. Żeby działał jak tranzystor konieczne jest, by elektrony pozostały w tym kanale. Wraz ze wzrostem temperatury elektrony stają się bardziej ruchliwe i wychodzą poza kanał - wyjaśnia Klimeck. Jeśli ktoś opracuje technikę pozwalającą na utrzymanie elektronów w wyznaczonym obszarze, będzie można zbudować komputer działający w temperaturze pokojowej. To podstawowy warunek praktycznego wykorzystania tej technologii - dodaje.
      Pojedyncze atomy działające jak tranzystory uzyskiwano już wcześniej, jednak teraz po raz pierwszy udało się ściśle kontrolować ich budowę w skali atomowej. Unikatową rzeczą, jaką osiągnęliśmy, jest precyzyjne umieszczenie pojedynczego atomu tam, gdzie chcieliśmy - powiedział Martin Fuechsle z University of New South Wales.
      Niektórzy naukowcy przypuszczają, że jeśli uda się kontrolować elektrony w kanale, to będzie można w ten sposób kontrolować kubity, zatem powstanie komputer kwantowy.
    • By KopalniaWiedzy.pl
      Uczeni z University of Manchester wpadli na pomysł, który przybliża moment praktycznego wykorzystania grafenu do budowy komputerów. Grafen jest bardzo obiecującym materiałem, ale sprawia on spory kłopot, gdy... przewodzi elektrony zbyt dobrze. To powoduje, że dochodzi do olbrzymich wycieków prądu z grafenowych urządzeń.
      Co prawda specjaliści zaprezentowali już pojedyncze grafenowe tranzystory, które pracują z częstotliwością nawet do 300 GHz, ale wycieki prądu powodują, że tranzystory takie nie mogą być zbyt gęsto upakowane. Natychmiast uległyby bowiem stopieniu.
      Naukowcy z Manchesteru zaproponowali interesujące rozwiązanie problemu. Ich zdaniem należy stworzyć grafenową diodę tunelującą.  W diodzie takiej elektrony tunelują się pomiędzy metalicznymi warstwami za pośrednictwem rozdzielającego je dielektryka.
      Doktor Leonid Ponomarenko, który stał na czele zespołu badawczego, mówi: Stworzyliśmy projekt nowej grafenowej elektroniki. Nasze tranzystory pracują dobrze. Myślę, że można je jeszcze udoskonalić, zminiaturyzować i przystosować do pracy z zegarami taktowanymi z częstotliwościami subterahercowymi.
      Nowe podejście zakłada połączenie warstw grafenu, azotkuboru i disiarczku molidenu. Tranzystory układa się warstwa po warstwie.
      Profesor Geim, jeden z wynalazców grafenu, mówi, że projekt takiego tranzystora to bardzo ważne wydarzenie, ale jeszcze ważniejsze jest prawdopodobnie wykazanie, iż można w skali atomowej układać warstwy.  Drugi wynalazca grafenu, profesor Novoselov dodaje, iż tranzystor tunelowy to jeden z niewyczerpanej gamy urządzeń, które mogą powstać za pomocą układania warstwami.
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Kalifornijskiego w Irvine odkryli, w jaki sposób lizozym z łez unieszkodliwia o wiele większe od siebie bakterie. Okazuje się, że enzym dysponuje "szczękami", za pomocą których przegryza się przez rzędy ścian komórkowych.
      Szczęki odgryzają ściany komórkowe bakterii, które próbują się dostać do oczu i wywołać infekcję - tłumaczy prof. Gregory Weiss. Lizozym można porównać do buldoga, który nie chce odpuścić, uczepiwszy się nogawki czyichś spodni. Zasadniczo wycina sobie drogę przez ścianę komórkową bakterii.
      Weiss i prof. Philip Collins rozszyfrowali zachowanie białka, budując jeden z najmniejszych na świecie tranzystorów - 25-krotnie mniejszy od stosowanych w laptopach czy smartfonach. Pojedyncze lizozymy przytwierdzano do obwodu.
      Nasze obwody są mikrofonami wielkości molekuły. To jak stetoskop do osłuchiwania serca, z tym że my słuchaliśmy pojedynczej cząsteczki białka - opowiada Collins.
      Naukowcy przyczepili cząsteczkę enzymu do przymocowanej do obwodu elektrycznego węglowej nanorurki. Kiedy przepuszczono przez niego prąd, nanorurka utworzyła miniaturowy mikrofon. Dzięki temu dało się podsłuchiwać enzym w czasie "przegryzania".
      W miarę jak lizozym przemieszcza się po powierzchni bakterii, wykonuje "chapnięcia", które są połączone z ruchem [na zasadzie odrzutu]. Każde ugryzienie tworzy nową minidziurkę, aż wreszcie powstaje wyrwa [...] i mikrob eksploduje - wyjaśnia Weiss. Wygryzanie zachodzi w stałym rytmie: jeden krok to otwieranie "szczęk", a dwa zamykanie.
      Zespół prowadził eksperymenty na wariantach lizozymu T4. Doprowadzono do ich nadekspresji u bakterii E. coli. Do pałeczek okrężnicy wprowadzono plazmid lizozymu.
      Naukowcy sądzą, że rozwiązanie, nad którym pracowali wiele lat, będzie można wykorzystać w wykrywaniu molekuł nowotworowych. Jeśli będzie można wykryć pojedyncze cząstki związane z nowotworem, oznacza to postawienie diagnozy na bardzo wczesnym etapie. Dysponowanie taką metodą zwiększy liczbę wyleczonych pacjentów i obniży koszty terapii.
    • By KopalniaWiedzy.pl
      Artykuł, opublikowany w Nature Communications przez Hidekiego Hiroriego, zapowiada przełom w budowie urządzeń wykorzystujących tranzystory. Odkrycie japońskich uczonych z Kyoto University może prowadzić do pojawienia się niezwykle szybkich tranzystorów oraz bardzo wydajnych ogniw fotowoltaicznych.
      Naukowcy pracując ze standardowym arsenkiem galu zaobserwowali, że poddanie próbki działaniu krótkiego impulsu pola elektrycznego o częstotliwości przekraczającej teraherc, spowodowało pojawienie się w niej prawdziwej lawiny par elektron-dziura (ekscytonów).
      Wystarczyło włączenie pojedynczego impulsu trwającego pikosekundę, by gęstość ekscytonów, w porównaniu ze stanem wyjściowym próbki, zwiększyła się 1000-krotnie.
      Badania nad zastosowaniem terahercowych częstotliwości prowadzone są w laboratorium profesora Koichiro Tanaki, który chce stworzyć dzięki nim mikroskop pozwalający na obserwowanie w czasie rzeczywistym żywych komórek. Wpływ takich częstotliwości na półprzewodnik to efekt uboczny badań, pokazujący jednak, jak wielkie możliwości drzemią w terahercowych częstotliwościach.
    • By KopalniaWiedzy.pl
      W budowanych przez człowieka urządzeniach informacja przekazywana jest za pomocą elektronów. Tymczasem istoty żywe wykorzystują w tym celu jony i protony. Dlatego też na University of Washington powstał tranzystor korzystający z protonów, dzięki któremu mogą w przyszłości pojawić się urządzenia do komunikacji z organizmami żywymi.
      Naukowcy od dawna pracują nad urządzeniami, które miałyby komunikować się z organizmem człowieka. Jednak wszystkie czujniki czy protezy korzystają z elektronów. To zawsze stanowi problem. Jak sygnały elektroniczne przełożyć na jonowe i na odwrót. Zidentyfikowaliśmy materiał, który bardzo dobrze przewodzi protony i może być interfejsem pomiędzy żywymi organizmami a elektroniką - mówi główny autor badań profesor Marto Rolandi.
      W organizmach żywych protony aktywują różnego rodzaju „przełączniki" i odgrywają kluczową rolę w przekazywaniu energii. Z kolei jony otwierają i zamykają kanały w ścianach komórkowych, umożliwiając pompowanie i wypompowywanie substancji. U ludzi i innych zwierząt jony są np. wykorzystywane do poruszania mięśniami czy przekazywania sygnałów z mózgu. Jeśli powstałaby maszyna pracująca dzięki jonom i protonom, mogłaby ona monitorować procesy przebiegające w organizmie, a w przyszłości nawet je kontrolować, sterując przepływem jonów i protonów.
      Pierwszym krokiem w kierunku powstania takiego urządzenia jest stworzenie protonowego tranzystora. Uczeni z University of Washington skonstruowali tego typu tranzystor polowy składający się z bramki, źródła i drenu. Ma on szerokość około 5 mikrometrów, jest zatem znacznie większy od współczesnych tranzystorów elektronicznych.
      Do zbudowania tranzystora wykorzystano zmodyfikowany chitozan. To łatwy w produkcji polisacharyd, który można wytwarzać ze skorup krabów, będących odpadem w przemyśle spożywczym. Chitozan absorbuje wodę i tworzy wiele wiązań wodorowych, dzięki którym przemieszczają się protony.
      Mamy protonowy odpowiednik obwodu elektronicznego i zaczynamy dobrze rozumieć zasady jego działania - mówi profesor Rolandi.
      Uczony mówi, że pierwsze urządzenia wykorzystujące protonowy tranzystor powinny pojawić się w przyszłej dekadzie. Najpierw będą wykorzystywane w roli laboratoryjnych czujników bezpośrednio badających pracę komórek. Jednak niewykluczone, że w przyszłości będą one wszczepiane do organizmów żywych by monitorować, a nawet kontrolować, niektóre ich funkcje. Obecny prototyp nie nadaje się do wszczepienia, gdyż podstawę dla protonowego obwodu wykonano z krzemu.
×
×
  • Create New...