Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Nowy typ immunoterapii, umożliwiający natychmiastową aktywację układu odpornościowego, został zaprezentowany przez naukowców z instytutu Scripps. Autorzy pomysłu liczą, że pomoże on w leczeniu takich chorób, jak nowotwory oraz AIDS.

Opracowana metoda eliminuje wiele wad typowych szczepionek, na czele z ich opóźnionym działaniem, wynikającym z konieczności uruchomienia mechanizmów niezbędnych do wytworzenia odporności. Oznacza to, że lek stworzony na bazie nowej techniki mógłby działać nie tylko profilaktycznie, lecz nawet leczniczo u osobników chorych.

Pomysł badaczy z instytutu Scripps polega na wykorzystaniu przeciwciał - białek wytwarzanych przez nasz układ odpornościowy w celu wiązania ściśle określonych molekuł, występujących np. na powierzchni mikroorganizmów. Są one poddawane modyfikacji za pomocą "adaptera" - cząsteczki dopasowującej kształt przeciwciał do molekuł przeznaczonych do neutralizacji i zniszczenia. 

Aby doszło do uruchomienia reakcji organizmu, konieczne jest , prócz "adaptera", użycie adjuwantu - substancji przestawiającej układ odpornościowy w stan "podwyższonej gotowości". Przypomina on nieco łagodny stan zapalny i umożliwia organizmowi odpowiednią reakcję na kompleks przeciwciało-adapter.

Skuteczność opracowanego rozwiązania sprawdzono na myszach, którym wszczepiano dwa rodzaje nowotworu: czerniaka złośliwego oraz raka jelita grubego. Eksperymentatorzy podali zwierzętom adjuwant, a po uruchomieniu reakcji organizmu wstrzyknięto także "adaptery". Efektem było gwałtowne zmniejszenie guzów, które u zwierząt z grupy nieleczonej (bądź leczonej tylko jednym z dwóch składników szczepionki) rosły nadal.

Jak oceniają autorzy wynalazku, może on posłużyć przede wszystkim w sytuacjach, w których konieczna jest szybka reakcja organizmu na zagrożenie. Oznacza to np. możliwość wykorzystania jej do leczenia pacjentów chorych na nowotwory, AIDS lub wyjątkowo groźne przypadki grypy, a także do neutralizacji toksyn, np. w razie ataku terrorystycznego. 

O swoim odkryciu badacze z instytutu Scripps informują na łamach czasopisma Proceedings of the National Academies of Science.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo mnie ciekawi, w jaki sposób tworzy się "adaptery" dla różnych antygenów. Czy istnieje jakaś gotowa biblioteka, czy trzeba za każdym razem szukać nowego? To chyba jedyna wada tej techniki, bo reszta brzmi wprost niesamowicie. Aż się boję o sukces mojej superhiperszczepionki :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

In the past few years, however, researchers have identified cell-surface markers unique to cancer cells. There are molecules called adjuvants that attach to such markers and trick the immune system into recognizing and attacking tumors. Adjuvants are used in clinics today, but some come with unwanted side effects--for example, soreness, fever, and arthritis. Scientists are now looking for ways to genetically engineer monoclonal antibodies--antibodies created from a single cell line--to recognize tumor markers and attack cancer. But these methods are expensive, and Barbas says that a chemical-based approach may provide a cheaper and faster alternative - mikroos, to chyba powinna być odpowiedź  :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A co z nieznającymi angielskiego ? Pewnie niejedną osobę mogłoby to ciekawić. Ogólny sens zrozumiałem - bardziej techniczno-specjalistycznych sformułowań niestety nie. Chociaż po polsku też by mi to wiele nie mówiło. Tak czy siak wnioskuję o tłumaczenie takich tekstów przed umieszczeniem ich tutaj na forum, inaczej możemy zacząć o wszystkim pisać po angielsku - ale jeden taki watek już wysechł :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@ma123ya

 

czytałem artykuł źródłowy. Problem w tym, że także on nie wyjaśnia dokładnie, o jakim związku mówimy. Nie ma czegoś takiego, jak "antygen swoisty dla komórek nowotworowy", jest jedynie pewna grupa związków, które czasem się na nich pojawiają. Dzięki za cytat, ale nie zaspokaja on mojej ciekawości ;):)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

ja bym "związki" z tego cytatu nazwał poprostu opsoninami.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Połączenie łagodnej infekcji i szczepionki wydaje się najbardziej efektywnym czynnikiem chroniącym przed COVID-19, informują naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Główny wniosek z naszych badań jest taki, że jeśli ktoś zachorował na COVID, a następnie został zaszczepiony, to nie tylko znacząco zwiększa się u niego liczba przeciwciał, ale rośnie ich jakość. To zaś zwiększa szanse, że przeciwciała te poradzą sobie z kolejnymi odmianami koronawirusa, mówi profesor Otto Yang z wydziałul chorób zakaźnych, mikrobiologii, immunologii i genetyki molekularnej.
      Wydaje się, że kolejne wystawienia układu odpornościowego na kontakt z białkiem kolca (białkiem S) pozwala układowi odpornościowemu na udoskonalanie przeciwciał u osoby, która chorowała na COVID-19. Uczony dodaje, że nie jest pewne, czy takie same korzyści odnoszą osoby, które przyjmują kolejne dawki szczepionki, ale nie chorowały.
      Grupa Yanga porównała przeciwciała 15 osób, które były zaszczepione, ale nie zetknęły się wcześniej z wirusem SARS-CoV-2 z przeciwciałami 10 osób, które nie były jeszcze zaszczepione, ale niedawno zaraziły się koronawirusem. Kilkanaście miesięcy później 10 wspomnianych osób z drugiej grupy było w pełni zaszczepionych i naukowcy ponownie zbadali ich przeciwciała.
      Uczeni sprawdzili, jak przeciwciała reagują na białko S różnych mutacji wirusa. Odkryli, że zarówno w przypadku osób zaszczepionych, które nie chorowały oraz tych, które chorowały, ale nie były szczepione, możliwości zwalczania wirusa przez przeciwciała spadały w podobnym stopniu gdy pojawiła się nowa mutacja. Jednak gdy osoby, które wcześniej chorowały na COVID-19, były rok po chorobie już w pełni zaszczepione, ich przeciwciała były zdolne do rozpoznania wszystkich mutacji koronawirusa, na których je testowano.
      Nie można wykluczyć, że odporność SARS-CoV-2 na działanie przeciwciał może zostać przełamana poprzez ich dalsze dojrzewanie w wyniki powtarzanej wskutek szczepienia ekspozycji na antygen, nawet jeśli sama szczepionka nie jest skierowana przeciwko danemu wariantowi, stwierdzają naukowcy. Przypuszczają oni, że kolejne szczepienia mogą działać podobnie jak szczepienia po przechorowaniu, jednak jest to tylko przypuszczenie, które wymagają weryfikacji.
      Ze szczegółami badań można zapoznać się w artykule Previous Infection Combined with Vaccination Produces Neutralizing Antibodies with Potency against SARS-CoV-2 Variants.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjaliści z Duke Human Vaccine Institute odkryli nowy typ przeciwciał antyglikanowych (Ab), które łączy się z zewnętrzną otoczką takich wirusów jak HIV, prowadząc do ich neutralizacji. Nowo zidentyfikowane przeciwciała, które znaleziono zarówno u ludzi jak i makaków, mogą doprowadzić do powstania szczepionek działających zarówno przeciwko SARS-CoV-2 jak i patogenom grzybiczym.
      "To zupełnie nowy rodzaj obrony gospodarza. Te przeciwciała mają spiralny kształt i mogą skutecznie bronić organizmu przed różnymi patogenami", ekscytuje się Barton Haynes, dyrektor Duke Human Vaccine Institute.
      Na powierzchni wielu patogenów, zarówno HIV, SARS-CoV-2 jak i grzybów, dochodzi do ekspresji glikanów. W przypadku HIV ponad 50% zewnętrznej otoczki stanowią glikany. Dlatego też naukowcy od dawna chcieliby wziąć je na cel, znaleźć przeciwciało je rozbijające, co umożliwiłoby neutralizację wirusa. Jednak nie jest to takie proste.
      HIV otoczony jest cukrami, które wyglądają jak glikany gospodarza. Dla układu odpornościowego wirus wygląda więc tak, jak część organizmu, a nie śmiercionośny patogen. Hayes i jego zespół odkryli nowy typ przeciwciał, które potrafią rozpoznać glikany na powierzchni HIV. Uczeni nazwali je przeciwciałami FDG (Fab-dimerized glycan-reactive). Dotychczas w nauce pojawiło się tylko jedno doniesienie o podobnych przeciwciałach. Zidentyfikowano je 24 lata temu i oznaczono jako 2G12. Dotychczas Ab 2G12 były jedynymi znanymi przeciwciałami reagującymi wyłącznie na glikany na powierzchni HIV.
      Teraz naukowcy z Duke zidentyfikowali całą klasę takich przeciwciał. Zawierają one nigdy wcześniej nie obserwowaną strukturę, która przypomina 2G12. Struktura ta pozwala przeciwciałom na bardzo mocne wiązanie się z pewnym specyficznym miejscem w otoczce HIV, ale nie na innych powierzchniach.
      Cechy strukturalne i funkcjonalne tych przeciwciał mogą zostać wykorzystane do zaprojektowania szczepionek biorących na cel glikany HIV, co zapoczątkuje odpowiedź limfocytów B i neutralizację wirusa, stwierdzają autorzy badań.
      Naukowcy zauważyli, że przeciwciała FDG przyłączają się też do Candida albicans oraz różnych wirusów, w tym SARS-CoV-2. Konieczne są dalsze badania dotyczące zarówno bezpieczeństwa stosowania tych przeciwciał, jak i sposobów ich ewentualnego wykorzystania w leczeniu.
      Szczegóły badań opisano w artykule Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      U osoby, która przed 17 laty chorowała na SARS znaleziono przeciwciała, które wydają się blokować koronawirusa SARS-CoV-2. Jeśli wstępne badania się potwierdzą, może to pomóc w walce z nowym patogenem. Głównymi autorami odkrycia są profesor David Veesler z Wydziału Medycyny University of Washington oraz Davide Corti z firmy Humabs Biomed SA, która należy do Vir Biotechnology.
      Obecnie w Vir Biotechnology trwają intensywne badania nad wspomnianym przeciwciałem, nazwanym S309, których celem ma być dopuszczenie go do testów klinicznych. Na razie, o czym dowiadujemy się z opublikowanego w Nature artykułu Cross-neutralization of SARS-CoV and SARS-CoV-2 by a human monoclonal antibody, wiadomo jedynie, że podczas testów laboratoryjnych S309 wiąże się z proteiną S koronawirusa i w ten sposób uniemożliwia mu zainfekowanie komórki. Wciąż musimy wykazać, że to przeciwciało chroni żywy organizm, czego jeszcze nie zrobiliśmy, mówi profesor Veesler.
      Wyjątkowość prac laboratorium Veeslera polega na tym, że nie pracuje ono na materiale od osób chorych na COVID-19, a na materiale od osoby, która była chora w 2003 roku. To pozwoliło nam na bardzo szybki postęp w porównaniu z innymi grupami naukowymi, wyjaśnia uczony. U badanego pacjenta w limfocytach pamięci, które powstają podczas zakażenia patogenem, znaleziono wiele przeciwciał monoklonalnych. Limfocyty pamięci zapamiętują patogen, z którym się już w przeszłości zetknęły i bronią organizmu przed powtórnym zarażeniem. Czasami taka pamięć działa przez całe życie. Fakt, że organizm zapamiętał SARS przez 17 lat daje nadzieję, że po zetknięciu się z nowym koronawirusem lub po zaszczepieniu, będziemy przez długi czas chronieni przed chorobą.
      Dzięki szczegółowym badaniom wiemy już, że S309 neutralizuje SARS-CoV-2 łącząc się z tym regionem proteiny S, który jest identyczny u patogenów z podrodzaju sarbecovirus, do którego należą koronawirusy SARS.
      W zidentyfikowania nowego przeciwciała brali też udział naukowcy z Instytutu Pasteura i Uniwersytetu w Lugano.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Immunoterapia to bardzo obiecująca metoda leczenia wielu nowotworów. Jej skuteczność zależy jednak od tego, czy mamy do czynienia z guzem „gorącym” czy „zimnym”. W przypadku guzów „zimnych”, którymi układ odpornościowy w ogóle się nie zainteresował, immunoterapia nie działa i chorzy leczeni są tradycyjnymi metodami.
      Naukowcy z Pritzker School of Molecular Engineering na University of Chicago donieśli właśnie o stworzeniu systemu, który powoduje, że „zimne” guzy stają się „gorącymi” i można je zaatakować za pomocą immunoterapii.
      Guzy „zimne” to takie guzy, które umknęły uwadze limfocytów T, nie doszło do ataku na nie, więc nie pojawiła się reakcja zapalna. One nie reagują na immunoterapię. Dlatego też osiągnięcie amerykańskich naukowców, zamiana guzów „zimnych” w „gorące”, jest tak ważne.
      Naukowcy z Chicago stworzyli system, który wyszukuje guza i przyczepia się do jego kolagenu. Następnie uwalniana jest proteina IL-12, która wywołuje w guzie stan zapalny, prowokując układ odpornościowy do ataku. Testy na myszach wypadły bardzo obiecująco. Nowa metoda pozwoliła na powstrzymanie rozwoju lub nawet na całkowite zlikwidowanie guzów różnych typów czerniaka i nowotworu piersi. To podejście otwiera nowe możliwości w dziedzinie immunoterapii nowotworów, mówi profesor Jeffrey Hubbell, który jest – obok profesor Melody Swartz i doktora Juna Ishihary – głównym autorem badań.
      Specjaliści zajmujący się immunoterapią skupiają się w ostatnim czasie na inhibitorach punktów kontrolnych. Leki do immunoterapii blokują proteiny zwane punktami kontrolnymi, dzięki czemu limfocyty T są w stanie zidentyfikować i zabić komórki nowotworowe. Jednak, aby metoda ta zadziałała, musimy mieć do czynienia z guzem „gorącym”. A to oznacza, że w wielu bardzo rozpowszechnionych nowotworach, takich jak nowotwory piersi, prostaty, jajników czy trzustki, immunoterapia nie działa, gdyż nowotwory te generują „zimne” guzy.
      Od dawna wiadomo, że cytokina IL-12, która reguluje odpowiedź limfocytów T, może zmieniać guzy „zimne” w „gorące”. Problem jednak w tym, że IL-12 ma tak potężne działanie, że może doprowadzić do śmierci pacjenta. Naukowcy od dawna poszukiwali metody na podanie IL-12 bezpośrednio do guza, bez powodowania efektów ubocznych w całym organizmie.
      W ubiegłym roku Hubbell i jego zespół opracowali system dostarczania leków, w którym lek jest przyczepiany do krążącego w krwi białka, które przyczepia się do kolagenu w miejscu uszkodzenia naczyń krwionośnych. Jako że guzy nowotworowe pełne są przeciekających naczyń krwionośnych, proteina postrzega je jako uszkodzone, przyczepia się do nich i dostarcza lek do guza.
      Teraz badacze postanowili wyposażyć proteinę w IL-12 i wykorzystać tę metodę w terapii z użyciem inhibitorów punktów kontrolnych. Według ich założeń proteina, po wstrzyknięciu do krwioobiegu, miała odnaleźć guz, przyczepić się do niego, uwolnić IL-12 i wywołać w guzie stan zapalny, zamieniając go z „zimnego” w „gorący”.
      Badania na myszach wykazały, że metoda ta działa. Wiele guzów zmniejszyło się, co zwiększyło szanse myszy na przeżycie. Te pozytywne wyniki uzyskaliśmy w guzach, na które inhibitory punktu zwrotnego dotychczas nie działały. Spodziewaliśmy się, że nasza metoda poskutkuje, ale zaskoczyło nas, jak dobre wyniki dawała, mówi Hubbell.
      Jako, że IL-12 jest w nowej metodzie podawana bezpośrednio do guza, całość jest o 2/3 mniej toksyczna niż wcześniej.
      W następnym etapie badań naukowcy chcą dodatkowo zmniejszyć negatywne skutki swojej terapii. Gdy im się to uda, chcą rozpocząć testy kliniczne na ludziach.
      Gdy już wiemy, jak zmienić guz „zimny” w „gorący” otwierają się przed nami nieskończone możliwości, cieszy się Hubbell.
      Ze szczegółami badań zapoznamy się na łamach Nature Biomedical Engineering.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Profesor immunologii Arturo Casadevall z Uniwersytetu Johnsa Hopkinsa pracuje nad unowocześnieniem znanej do stu lat metody walki z chorobami zakaźnymi. Uczony chce pozyskiwać przeciwciała od osób już wyleczonych z COVID-19 i wstrzykiwać je tym, którzy dopiero zachorowali lub są narażeni na szczególne ryzyko. Rozpoczęcie takiej terapii nie wymagałoby eksperymentów ani prac badawczo-rozwojowych. Metodę tę można by wdrożyć w ciągu najbliższych teorii, gdyż bazuje ona na znanym procesie przechowywania krwi, mówi naukowiec.
      Casadevall wraz z zespołem proszą ludzi, którzy przeszli już COVID-19 o oddawanie krwi. Jest z niej izolowane serum. Po jego przetworzeniu i usunięciu innych toksyn, można by je wstrzykiwać osobom chorym lub narażonym zachorowanie.
      Procedura izolowania serum i jego oczyszczania jest znana od dawna i wykonywana standardowo w szpitalach i laboratorich. Koncepcja wykorzystania krwi od osób, które przeszły chorobę zakaźną narodziła się na początku XX wieku. Metoda ta była wielokrotnie używana. W samych USA zapobiegła wybuchowi epidemii odry w 1934 roku.
      Amerykanie nie są jedynymi, którzy chcą do niej powrócić. Testy na ograniczoną skalę przeprowadzili już Chińczycy i uzyskali obiecujące wyniki. Prace nad tą metodą prowadzi też jedna z japońskich firm.
      Eksperci mówią, że głównym wyzwaniem jest tutaj odpowiednie dobranie czasu tak, by zmaksymalizować odpowiedź immunologiczną osoby, której zostanie podane serum. Metoda ta nie jest metodą leczenia. To tymczasowe rozwiązanie, które pomoże w oczekiwaniu na lepsze opcje, jak na przykład szczepionka.
      To możliwe do wykonania, ale wymaga sporego wysiłku organizacyjnego i odpowiednich zasobów... oraz ludzi, którzy wyleczyli się z choroby i będą chcieli oraz mogli oddać krew, mówi Casadevall. Jego zdaniem, jest to dobra metoda lokalnych działań mających na celu zahamowanie epidemii. Przy okazji, można przeprowadzić badania kliniczne na temat jak najbardziej efektywnego wykorzystania serum w tego typu przypadkach.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...