Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Przeciwrakowe działanie brokułów jest znane od wielu lat. Dotychczas niewiele było jednak wiadomo na temat mechanizmu ich działania, tymczasem okazuje się, że do złudzenia przypomina on aktywność niektórych... leków stosowanych w chemioterapii.

Główną autorką odkrycia (a także publikacji na jego temat) jest Olga Azarenko, magistrantka(!) z Uniwersytetu Kalifornijskiego. Jak tłumaczy młoda badaczka, warzywa z rodziny kapustowatych zawierają związki zwane izotiocyjanianami, które, jak sądzimy, są odpowiedzialne za profilaktyczne i lecznicze działanie tych warzyw wobec nowotworów. Brokuły oraz ich kiełki zawierają największą ilość izotiocyjanianów.

Jednym z najistotniejszych związków z tej grupy jest sulforafan (SFN). Wiele wcześniejszych badań wskazywało na jego zdolność do zapobiegania guzom piersi u zwierząt laboratoryjnych. Testy laboratoryjne na komórkach ludzkich wykazały także jego tokstyczność względem raka piersi przy zachowaniu zerowej szkodliwości dla komórek zdrowych.

Dzięki swoim eksperymentom Azarenko wykazała, że mechanizm działania SFN jest łudząco podobny do aktywności taksanów oraz winkrystyny - popularnych leków stosowanych w chemioterapii nowotworów. Wszystkie te substancje blokują mitozę, czyli następujący po replikacji DNA proces rozdzielania chromosomów oraz podziału komórki na dwie komórki potomne. 

Proces mitozy jest zależny od mikrotubul - rurkowatych tworów zbudowanych z białek, których zadaniem jest "przeciągnięcie" chromosomów do przeciwległych krańców przygotowującej się do podziału komórki. SFN posiada zdolność do niszczenia mikrotubul, dzięki czemu komórki nie są zdolne do namnażania.

Choć leczniczy składnik brokułów jest znacznie mniej aktywny od typowych leków stosowanych w klinice, jego toksyczność także jest znacznie obniżona. Pozwala to na stosowanie go przez lata bez wywoływania jakichkolwiek negatywnych objawów.

SFN może być efektywnym czynnikiem zapobiegającym nowotworom, ponieważ hamuje namnażanie i zabija komórki przednowotworowe, tłumaczy przełożony młodej badaczki, prof. Leslie Wilson. Jego zdaniem, podawanie sulforafanu razem z taksanami mogłoby zwiększyć skuteczność terapii bez podnoszenia ryzyka działań niepożądanych. Ostateczne potwierdzenie tego przypuszczenia będzie jednak wymagało przeprowadzenia dodatkowych eksperymentów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Odpowiednio dobrane aminokwasy mogą zwiększyć skuteczność radioterapii niedrobnokomórkowego raka płuc, czytamy na łamach Molecules. Autorkami badań są uczone z Narodowego Centrum Badań Jądrowych, Uniwersytetu Warszawskiego, Warszawskiego Uniwersytetu Medycznego oraz firmy Pro-Environment Polska. Pracowały one nad zwiększeniem skuteczności terapii borowo-neutronowej (BNCT).
      Terapia ta używana jest w leczeniu nowotworów szczególnie wrażliwych narządów, na przykład mózgu, i wykorzystuje cząsteczki zawierające bor do niszczenia komórek nowotworowych. Związki boru mają skłonność do gromadzenia się w komórkach nowotworowych. Gdy izotop boru-10 zostanie wystawiony na działanie neutronów o odpowiednich energiach, najpierw je pochłania, a następnie dochodzi do rozszczepienia jądra izotopu, czemu towarzyszy emisja promieniowania alfa. To promieniowanie krótkozasięgowe, które uszkadza DNA komórki, powodując jej śmierć. BNTC znajduje się nadal w fazie badań klinicznych, ale już wykazały one, że ta metoda leczenia będzie przydatna m.in. w walce z nowotworami skóry, tarczycy czy mózgu.
      Polskie uczone chciały zwiększyć skuteczność tej obiecującej metody leczenia. Chciały sprawdzić, czy wcześniejsze podanie odpowiednich aminokwasów może zwiększyć wchłanianie aminokwasowego związku boru przez komórki nowotworowe, nie zmieniając ich przyswajalności przez komórki zdrowe. Im bowiem więcej boru wchłoną komórki chore, tym większe promieniowanie alfa w komórkach nowotworowych w stosunku do komórek zdrowych, a zatem tym bezpieczniejsza terapia BNCT.
      W badaniu in vitro wykorzystaliśmy dwa rodzaje komórek: ludzkie komórki niedrobnokomórkowego raka płuc, A549, oraz prawidłowe fibroblasty płuc pochodzące od chomika chińskiego, V79–4. Komórki najpierw były narażane na L-fenyloalaninę lub L-tyrozynę. Po godzinie były eksponowane na 4-borono-L-fenyloalaninę (BPA), która jest związkiem zawierającym bor stosowanym w badaniach klinicznych nad BNCT. Badanie zawartości boru w komórkach poddanych działaniu aminokwasów i w komórkach referencyjnych przeprowadziłyśmy metodą analityczną wykorzystującą spektrometrię mas sprzężoną z plazmą wzbudzaną indukcyjnie, mówi główna autorka artykułu, doktorantka Emilia Balcer. Nasze wyniki są sygnałem, że istnieje wpływ L-aminokwasów na pobieranie BPA w komórkach zarówno nowotworowych, jak i prawidłowych. Opracowana przez nas metoda analityczna może pomóc w lepszym zrozumieniu mechanizmów działania związków boru oraz w stworzeniu bardziej skutecznych strategii terapeutycznych, jednak konieczne są dalsze badania w celu potwierdzenia tych wyników i bardziej szczegółowej charakteryzacji działających tu mechanizmów, dodaje uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chemioterapia staje się coraz bardziej skuteczna, coraz więcej osób udaje się wyleczyć z nowotworów, jednak wiele z nich ma później problemy z sercem, które z czasem zabijają część byłych pacjentów onkologicznych. Pojawiła się więc nowa dziedzina medycyny, kardioonkologia. Zajmujący się nią naukowcy z University of Illinois Chicago zidentyfikowali właśnie mechanizm, za pomocą którego enzymy mogą pomóc w zapobieganiu uszkodzenia mięśnia sercowego u osób poddawanych chemioterapii.
      Uczeni najpierw zauważyli, że gdy komórki mięśnia sercowego zostają poddane stresowi pod wpływem chemioterapii, enzymy mitochondrialne przemieszczają się do jądra komórkowego, co jest niezwykłym zjawiskiem. Badacze nie wiedzieli, co to oznacza – czy zjawisko to prowadzi do uszkodzenia komórek, czy też ma je chronić przed uszkodzeniem. Nie mieliśmy pojęcia, co wykażą badania, mówi doktor Jalees Rehman.
      Stworzyli więc wersje enzymów, które omijały mitochondria i przemieszczały się do jądra. Okazało się, że to wzmacniało komórkę, utrzymując ją przy życiu. Następnie wykazali, że proces ten działa tak samo zarówno w przypadku komórek ludzkiego serca uzyskanych z ludzkich komórek macierzystych jak i u myszy poddanych chemioterapii. Wydaje się, że mamy tutaj nieznany nam wcześniej mechanizm, za pomocą którego komórki mięśnia sercowego bronią się przed uszkodzeniem w wyniku chemioterapii, dodaje Rehman.
      Odkrycie daje nowe możliwości kliniczne. Lekarze mogą na przykład testować indywidualnych pacjentów pod kątem zdolności ich organizmu do ochrony serca. Mogliby z komórek macierzystych z krwi pacjenta uzyskiwać komórki serca i testować je pod kątem podatności na uszkodzenia. Oceniając przemieszczanie się enzymów z mitochondriów oraz uszkodzenia powodowane przez chemioterapię można by ocenić jej skutki dla pacjenta, wyjaśnia uczony. U pacjentów, u których taka ochrona jest niedostateczna, można by wywoływać zwiększony ruch enzymów do jąder komórkowych, chroniąc w ten sposób serce przed uszkodzeniem.
      Naukowcy chcą teraz przeprowadzić kolejne badania, by sprawdzić, czy ten sam mechanizm może chronić serce przed innymi uszkodzeniami, powodowanymi np. przez nadciśnienie czy zawały. Chcieliby też przekonać się, czy w ten sposób można chronić inne komórki np. tworzące naczynia krwionośne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wypróbowaliśmy prosty pomysł: co by było, gdybyśmy wzięli komórki nowotworowe i zmienili je w zabójców nowotworów oraz szczepionki przeciwnowotworowe, mówi Khalid Shah z Brigham and Women's Hospital i Uniwersytetu Harvarda. Za pomocą inżynierii genetycznej zmieniamy komórki nowotworowe w lek, który zabija guzy nowotworowe oraz stymuluje układ odpornościowy, by zarówno niszczył guzy pierwotne, jak i zapobiegał nowotworom, dodaje uczony. Prowadzony przez niego zespół przetestował swoją szczepionkę przeciwnowotworową na mysimi modelu glejaka wielopostaciowego.
      Prace nad szczepionkami przeciwnowotworowymi trwają w wielu laboratoriach na świecie.Jednak Shah i koledzy podeszli do problemu w nowatorski sposób. Zamiast wykorzystywać dezaktywowane komórki, przeprowadzili zmiany genetyczne w żywych komórkach, które charakteryzują się tym, że pokonują one w mózgu duże odległości, by powrócić do guza, z którego pochodzą. Dlatego też Shah wykorzystali technikę CRISPR-Cas9 i zmienili te komórki tak, by uwalniały środek zabijający komórki nowotworowe. Ponadto zmodyfikowane komórki prezentują na swojej powierzchni czynniki, dzięki którym układ odpornościowy uczy się je rozpoznawać, dzięki czemu na długi czas jest gotowy do wyszukiwania i zabijania komórek nowotworowych.
      Komórki takie zostały przetestowane na różnych liniach komórkowych pobranych od ludzi, w tym na komórkach szpiku, wątroby i grasicy. Naukowcy wbudowali też w zmodyfikowane komórki specjalny bezpiecznik, który w razie potrzeby może zostać aktywowany, zabijając komórkę.
      Przed badaczami jeszcze długa droga zanim powstanie szczepionka, którą można będzie przetestować na ludziach. Już teraz zapewniają jednak, że ich metodę badawczą można zastosować również do innych nowotworów, nie tylko do glejaka wielopostaciowego.
      Ze szczegółami badań można zapoznać się na łamach Science Translational Medicine.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W kręgu triasowego płaza Metoposaurus krasiejowensis, którego szczątki znaleziono w Krasiejowie koło Opola, odkryto ślady nowotworu. Międzynarodowy zespół naukowy prowadzony przez doktora Dawida Surmika z Uniwersytetu Śląskiego zbadał kręg znajdujący się w zbiorach Instytutu Paleobiologii PAN. Naukowcy zidentyfikowali narośl obrastającą znaczną część kręgu i postanowili przyjrzeć się jej bliżej.
      Wykorzystali w tym celu promieniowanie rentgenowskie, które ujawniło, że narośl występuje nie tylko na zewnątrz, ale wnika w głąb kości. Stało się jasne, że to nowotwór złośliwy. Przygotowali się odpowiedni preparat, który mogli zbadać pod mikroskopem. Szczególną uwagę zwrócili na kontakt pomiędzy częścią zdrową, a zmienioną chorobowo. Okazało się, że żyjący 210 milionów lat temu zwierzę cierpiało na kostniakomięsaka. To jeden z najstarszych zidentyfikowanych przykładów raka, a jednocześnie najlepiej udokumentowany nowotwór u prehistorycznego zwierzęcia.
      Badany okaz jest bardzo interesujący, gdyż mamy tutaj udokumentowany przypadek zaawansowanego nowotworu kości u wymarłej grupy zwierząt, spokrewnionej z czworonogami, o których sądzi się, że są odporne na nowotwory. To przypadek dobrze udokumentowanego kostniakomięsaka – rzadkiego nowotworu kości – i jego występowania w późnym triasie, czytamy w artykule opublikowanym na łamach BMC Ecology and Evolution.
      Co więcej, autorzy badań podkreślają, że ich wyniki wspierają organicystyczny pogląd na powstawanie nowotworów (TOFT – Tissue Organization Field Theory). To hipoteza mówiąca, że przyczyną powstawania nowotworów nie są – w uproszczeniu – mutacje genetyczne w pojedynczej komórce, a zaburzenia architektury tkanek, co w konsekwencji prowadzi do zaburzeń komunikacji międzykomórkowej i międzytkankowej. Takie zaburzenia w komunikacji dotyczące np. polaryzacji błony komórkowej i w konsekwencji zaburzeń w transporcie jonów, ma prowadzić m.in. do rozwoju nowotworów.
      Z tego też powodu Surmik i jego zespół uważają, że paleontolodzy powinni zwracać szczególną uwagę na wszelkie nieprawidłowości w kościach skamieniałych zwierząt kopalnych, które mogą wskazywać na rozwój nowotworów. Kości takie powinny następnie stanowić przedmiot badań onkologii porównawczej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Guzy nowotworowe zawierają wiele różnych gatunków grzybów, donoszą naukowcy z izraelskiego Instytutu Naukowego Weizmanna oraz Uniwersytetu Kalifornijskiego w San Diego (UCSD). Autorzy badań, których wyniki opublikowano w piśmie Cell, uważają, że odkrycie grzybów wewnątrz guzów może potencjalnie przydać się podczas diagnostyki nowotworów poprzez testy krwi, nie można też wykluczyć, że będzie ono pomocne w czasie leczenia.
      Naukowcy z Izraela i USA poszukiwali grzybów w ponad 17 000 próbek tkanek i krwi pobranych od pacjentów z 35 rodzajami nowotworów. Odkryli, że grzyby występują we wszystkich badanych rodzajach nowotworów. Najczęściej ukrywały się wewnątrz komórek nowotworowych lub wewnątrz komórek układu odpornościowego obecnych w guzach.
      Autorzy badań zauważyli też liczne korelacje pomiędzy konkretnym gatunkiem grzyba w guzie nowotworowym, a warunkami związanymi z leczeniem nowotworu. Okazało się na przykład, że osoby chorujące na raka piersi, w których guzach występuje Malassezia globosa – grzyb zwykle występujący na skórze – mają mniejsze szanse na przeżycie, niż osoby, u których Malassezia globosa nie występuje. Ponadto specyficzne gatunki grzybów były częściej znajdowane w guzach raka piersi starszych pacjentów, niż młodszych, w guzach nowotworowych płuc u palących niż u niepalących, a w guzach czerniaka nie reagujących na immunoterapię częściej, niż w reagujących.
      Zdaniem profesora Ravida Straussmana z Wydziału Biologii Molekularnej Komórki Instytutu Weizmanna, spostrzeżenia te wskazują, że obecność grzybów to nowy niebadany dotychczas obszar onkologii. Dzięki tym odkryciom powinniśmy lepiej zrozumieć potencjalny wpływ grzybów na guza i ponownie przyjrzeć się temu, co wiemy na temat nowotworów z punktu widzenia ich „mikrobiomu”, stwierdza uczony.
      Nie od dzisiaj wiemy, że w guzach obecne są też bakterie. Autorzy najnowszych badań przyjrzeli się również im i stwierdzili, że w guzach istnieją typowe „huby” obu mikroorganizmów. Na przykład dla guzów, w których obecne są grzyby z rodzaju Aspergillus, typowe są inne bakterie, niż dla guzów, gdzie występują grzyby z rodzaju Malassezia. Odkrycie tych „hubów” może mieć olbrzymie znaczenie, gdyż występowanie bakterii i grzybów w guzach jest skorelowane zarówno z podatnością guza na leczenie, jak i z szansami pacjenta na przeżycie.
      Badania te rzucają nowe światło na złożone środowisko biologiczne guzów, a przyszłe badania pokażą nam, w jaki sposób grzyby wpływają na rozrost nowotworu, mówi współautor badań, profesor Yitzhak Pilpel. Fakt, że grzyby znajdujemy nie tylko w komórkach nowotworowych, ale też w komórkach odpornościowych pokazuje, że w przyszłości prawdopodobnie odkryjemy, że grzyby wywierają jakiś wpływ nie tylko na komórki nowotworowe, ale też na odpornościowe i ich aktywność, dodaje uczony.
      Obecność grzybów w komórkach nowotworowych to z jednej strony niespodzianka, a z drugiej strony coś, co można było przewidzieć. To niespodzianka, gdyż nie wiemy, jaką drogą grzyby dostają się do guzów w różnych częściach ciała. Jest to jednak coś, czego należało się spodziewać, gdyż pasuje do zdrowego mikrobiomu całego organizmu, w tym mikrobiomu jelit, ust czy skóry, gdzie bakterie i grzyby wchodzą w interakcje, tworząc złożone społeczności, mówi profesor Rob Knight z UCSD.
      Naukowcy badali też krew pod kątem DNA grzybów i bakterii. Uzyskane wyniki sugerują, że pomiary DNA mikroorganizmów we krwi mogą pomóc we wczesnym wykryciu nowotworu, gdyż w krwi osób z nowotworami i osób zdrowych występują różne sygnatury tego DNA, wyjaśnia doktor Gregory Sepich-Poore.
      Nauka szacuje, że na Ziemi istnieje ponad 6 milionów gatunków grzybów. Są one obecne w każdym zakątku planety. Dotychczas udało się zidentyfikować około 148 000 gatunków z czego zaledwie kilkaset zamieszkujących organizm człowieka.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...