Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'taksany'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Lekarze z Centrum Medycznego Uniwersytetu Rush donoszą o zakończeniu wstępnej fazy testów interesującej metody dostarczania leków przeciwnowotworowych. Opracowana technika polega na wstrzykiwaniu żelu wysyconego lekiem chemioterapeutycznym wprost do wnętrza guza przełyku. Podawanie leków bezpośrednio do wnętrza guza jest obiecującą techniką, dającą nadzieję na obniżenie toksyczności terapii przy utrzymaniu jej skuteczności. Zadanie to jest jednak podwójnie trudne, gdyż wymaga, oprócz dobrania odpowiednich leków niszczących patologiczną tkankę, opracowania nośników zapewniających uwalnianie leczniczej zawartości w ściśle określonym tempie. Terapia opracowana na Uniwersytecie Rush opiera się o wykorzystanie paklitakselu, jednego z podstawowych leków stosowanych w chemioterapii nowotworów. Substancja ta została zatopiona w biodegradowalnym żelu, wykonanym z tworzywa używanego zwykle do produkcji wchłanialnych nici chirurgicznych. Zapewnia to stopniowe uwalnianie substancji aktywnej oraz całkowite rozpuszczenie implantu po zaaplikowaniu pełnej dawki paklitakselu. Leczniczy kompleks, nazwany OncoGel, jest podawany wprost do zmienionej chorobowo ściany przełyku. Dokonuje się tego podczas standardowej endoskopii, a czas uwalniania leku wynosi około sześć tygodni. Badacze z Uniwersytetu Rush przeprowadzili niedawno pierwsze testy swojego wynalazku. Objęły one pacjentów z zaawansowanym rakiem przełyku nienadającym się do leczenia chirurgicznego. Jak wykazano w eksperymencie, aż u 70% pacjentów leczonych jednocześnie za pomocą OncoGelu oraz radioterapii zaobserwowano zmniejszenie objętości guza. Co więcej, po zakończeniu leczenia aż u 40% leczonych osób stwierdzono całkowity brak komórek nowotworowych w materiale pobranym podczas biopsji. Jeżeli kolejne fazy badań klinicznych zakończą się uzyskaniem równie pomyślnych wyników, preparat może zostać dopuszczony do powszechnego użytku. Niestety, najprawdopodobniej dojdzie do tego dopiero za kilka lat.
  2. Przeciwrakowe działanie brokułów jest znane od wielu lat. Dotychczas niewiele było jednak wiadomo na temat mechanizmu ich działania, tymczasem okazuje się, że do złudzenia przypomina on aktywność niektórych... leków stosowanych w chemioterapii. Główną autorką odkrycia (a także publikacji na jego temat) jest Olga Azarenko, magistrantka(!) z Uniwersytetu Kalifornijskiego. Jak tłumaczy młoda badaczka, warzywa z rodziny kapustowatych zawierają związki zwane izotiocyjanianami, które, jak sądzimy, są odpowiedzialne za profilaktyczne i lecznicze działanie tych warzyw wobec nowotworów. Brokuły oraz ich kiełki zawierają największą ilość izotiocyjanianów. Jednym z najistotniejszych związków z tej grupy jest sulforafan (SFN). Wiele wcześniejszych badań wskazywało na jego zdolność do zapobiegania guzom piersi u zwierząt laboratoryjnych. Testy laboratoryjne na komórkach ludzkich wykazały także jego tokstyczność względem raka piersi przy zachowaniu zerowej szkodliwości dla komórek zdrowych. Dzięki swoim eksperymentom Azarenko wykazała, że mechanizm działania SFN jest łudząco podobny do aktywności taksanów oraz winkrystyny - popularnych leków stosowanych w chemioterapii nowotworów. Wszystkie te substancje blokują mitozę, czyli następujący po replikacji DNA proces rozdzielania chromosomów oraz podziału komórki na dwie komórki potomne. Proces mitozy jest zależny od mikrotubul - rurkowatych tworów zbudowanych z białek, których zadaniem jest "przeciągnięcie" chromosomów do przeciwległych krańców przygotowującej się do podziału komórki. SFN posiada zdolność do niszczenia mikrotubul, dzięki czemu komórki nie są zdolne do namnażania. Choć leczniczy składnik brokułów jest znacznie mniej aktywny od typowych leków stosowanych w klinice, jego toksyczność także jest znacznie obniżona. Pozwala to na stosowanie go przez lata bez wywoływania jakichkolwiek negatywnych objawów. SFN może być efektywnym czynnikiem zapobiegającym nowotworom, ponieważ hamuje namnażanie i zabija komórki przednowotworowe, tłumaczy przełożony młodej badaczki, prof. Leslie Wilson. Jego zdaniem, podawanie sulforafanu razem z taksanami mogłoby zwiększyć skuteczność terapii bez podnoszenia ryzyka działań niepożądanych. Ostateczne potwierdzenie tego przypuszczenia będzie jednak wymagało przeprowadzenia dodatkowych eksperymentów.
  3. Podawanie leków standardowo stosowanych w chemioterapii może być znacznie skuteczniejsze, gdy zostaną one dostarczone w formie połączonej z nanorurkami węglowymi - twierdzą badacze z Uniwersytetu Stanforda. Zdaniem głównego autora badań, magistranta Zhuanga Liu, zastosowanie nośnika zbudowanego z nanorurek pozwala na osiągnięcie niższego tempa uwalniania leku oraz na zwiększenie dawki docierającej do tkanki nowotworowej. Pozwala to na poprawę skuteczności oraz zwiększenie bezpieczeństwa terapii. Przeprowadzony przez Liu eksperyment dotyczył paklitakselu - substancji stosowanej powszechnie głównie w leczeniu wielu nowotworów, m.in. raka piersi, jajnika oraz płuc. Cząsteczki leku zostały połączone z nanorurkami o specjalnej strukturze - pokryto je warstwą rozgałęzionych cząsteczek glikolu polietylenowego (PEG), związku używanego powszechnie m.in. w przemyśle kosmetycznym. Modyfikacja ta jest niezwykle istotna, gdyż zwiększa średnicę rurki i pomaga "ukryć" ją przed układem immunologicznym. Do tak przygotowanego nośnika przyłączono następnie molekuły paklitakselu. Sekretem działania opracowanej na Uniwersytecie Stanforda technologii jest fakt, że naczynia krwionośne w obrębie guza są zbudowane nieprawidłowo. Ich ściany są porowate i nieszczelne, przez co dochodzi do wyciekania leku do otaczającej tkanki. Wielkość zsyntetyzowanych nanorurek została dobrana tak, by z łatwością opuszczały one naczynia wewnątrz nowotworu, lecz były zbyt duże, aby wyciekać ze zdrowych. W celu celu oceny efektywności przygotowanych cząsteczek przetestowano je w tzw. modelu zwierzęcym. Wyhodowano w tym celu myszy, którym wszczepiono komórki nowotworowe, a następnie, gdy guzy rozwinęły się do pożądanych rozmiarów, podzielono zwierzęta na dwie grupy. W jednej z nich podawano paklitaksel według standardowego protokołu leczenia, w drugiej zaś zastosowano nanorurki z przyłączonymi cząsteczkami leku. Eksperyment pokazał, że nowa technika pozwala na osiągnięcie aż dziesięciokrotnie wyższego stężenia chemoterapeutyku wewnątrz guza w porównaniu do tradycyjnej terapii. Miało to wyraźne przełożenie na rozwój choroby u myszy - po zakończeniu leczenia guzy u myszy leczonych z zastosowaniem nanorurek nasyconych PEG i paklitakselem były aż o połowę mniejsze w porównaniu do grupy kontrolnej. Wcześniejsze badania wykazały, że pokrywanie węglowych nanorurek glikolem polietylenowym pozwala na utrzymanie ich w krwiobiegu przez znacznie dłuższy czas, dzięki czemu nie są one tak intensywnie wychwytywane przez "przypadkowe" komórki. Wiedza zdobyta dzięki obu eksperymentom pokazuje, że paklitaksel związany z nośnikiem wchłaniany jest wolniej w porównaniu do postaci wolnej, lecz jego dystrybucja do guza jest bardziej precyzyjna. Mówiąc najprościej, oznacza to, że lek działa znacznie silniej wewnątrz guza (czyli tam, gdzie powinien), za to oddziałuje znacznie łagodniej na zdrowe tkanki, zmniejszając intensywność objawów ubocznych. Zdaniem biorącego udział w badaniach prof. Hongjie Daia, identyczna metoda może zostać zastosowana w celu dostarczania wielu innych leków, które powinny trafiać tylko do określonych grup komórek. Tłumaczy jednak, że technika ma ogromny, wciąż niewykorzystany potencjał: to, co robimy teraz, to "pasywne celowanie", wykorzystujące nieszczelne naczynia krwionośne guza. Bardziej aktywna forma celowania mogłaby polegać na przyłączeniu do nanorurki peptydu [fragmentu łańcucha białkowego - przyp. red.] lub przeciwciała, które wiązałoby specyficznie tylko komórki nowotworowe. Powinno to jeszcze bardziej zwiększyć efektywność leczenia. Prof. Dai nie poprzestał na słowach - jego zespół już teraz pracuje nad realizacją tego pomysłu. Naukowiec jest pełen optymizmu: mamy nadzieję, że będziemy w stanie wprowadzić tę technikę do praktycznego zastosowania w warunkach klinicznych. Uczyniliśmy krok naprzód, lecz potrzeba będzie jeszcze trochę czasu, by udowodnić jej skuteczność i bezpieczeństwo.
×
×
  • Create New...