Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Lek przechowywany w "baterii"

Rekomendowane odpowiedzi

Co się stanie, gdy ze sobą połączymy dwa przewodniki i powleczemy je warstwą leku? Stworzymy w ten sposób miniaturową "baterię", która będzie stopniowo uwalniała swoją leczniczą zawartość. O odkryciu poinformowano podczas konferencji Medical Bionics w australijskim Melbourne.

"Inteligentny" implant został zaprojektowany w oparciu o stenty - miniaturowe rurki o ażurowych ściankach, wszczepiane najczęściej do wnętrza naczyń krwionośnych. Ich zadaniem jest podtrzymywanie uszkodzonego naczynia i zapobieganie jego zapadaniu. Niektóre z nich są wykonane ze stopów magnezu, dzięki czemu są stopniowo utleniane i wypłukiwane pod wpływem przepływającej krwi. 

Zespół z australijskiego Uniwersytetu Wollongong poprowadzony przez Gordona Wallace'a postanowił rozwinąć ten wynalazek i wykorzystać go do nowego celu. Oprócz magnezu wykorzystano w nim przewodzący prąd polimer, który pokryto następnie warstwą leku przeciwzapalnego.

Wstępne badania nad urządzeniem przeprowadzono w warunkach laboratoryjnych. Rolę krwi spełniał płyn zawierający elektrolity, czyli substancje rozpadające się w roztworach wodnych na jony. Pod ich wpływem stent zamieniał się w miniogniwo elektryczne, którego anodę stanowiła magnezowa siatka, zaś rolę katody spełniało tworzywo sztuczne. Wraz z "rozładowywaniem się" ogniwa dochodziło do zmiany ładunków elektrycznych na powierzchni implantu, co pozwalało na stopniowe uwalnianie leku

Intensywność procesu była ściśle zależna od stężenia jonów w roztworze, co pozwala przypuszczać, że implant powinien podobnie reagować na różną szybkość przepływu oraz skład krwi w jego najbliższym otoczeniu. Aby dodatkowo ułatwić regulowanie tempa uwalniania leku zastosowano kolejną warstwę tworzywa sztucznego, tym razem posiadającego zdolność stopniowej biodegradacji

Pomysł Australijczyków, choć prosty, może się okazać bardzo przydatny. Autorzy oceniają, że może on posłużyć np. do wzbogacania stosowanych obecnie implantów, takich jak np. protezy stawów. Choć są one wykonywane ze stosunkowo pasywnego chemicznie tytanu, one także mogłyby, zdaniem Wallace'a, posłużyć jako matryca przechowująca zapas leku. Niestety, na razie nie wiadomo, czy i kiedy technologia ta zostanie dopuszczona do zastosowania w medycynie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Materiały stosowane w biomedycynie muszą cechować się kontrolowaną biodegradowalnością, odpowiednią wytrzymałością i całkowitym brakiem toksyczności dla ludzkiego organizmu. Poszukiwanie takich materiałów nie jest więc prostym zadaniem. W tym kontekście naukowcy od dłuższego czasu interesują się magnezem. Wykorzystując między innymi spektroskopię anihilacji pozytonów, badaczom udało się wykazać, że magnez poddany powierzchniowej obróbce mechaniczno-ściernej uzyskuje niezbędne dla materiału biokompatybilnego właściwości.
      W ostatnim czasie coraz większe zainteresowanie zyskują materiały korodujące w sposób kontrolowany. W szczególności dotyczy to biomedycyny, gdzie stosuje się implanty wykonane z polimerów naturalnych lub syntetycznych. Ich zaletą jest łatwość dostosowania szybkości rozkładu w warunkach fizjologicznych. Z drugiej strony, właściwości mechaniczne tych materiałów ulegają pogorszeniu w środowisku organizmu ludzkiego, przez co nie nadają się do zastosowań narażonych na duże obciążenia. Z tego powodu dobrym rozwiązaniem wydają się implanty metaliczne, stworzone na bazie całkowicie nieszkodliwego dla ludzkiego organizmu magnezu.
      Ze względu na swoje właściwości mechaniczne, termiczne i elektryczne oraz biodegradowalność, a także kontrolowane tempo korozji, magnez wzbudza duże zainteresowanie badaczy zajmujących się biokompatybilnymi implantami. Pomimo tych zalet, zastosowanie magnezu jako biomateriału używanego przy produkcji implantów okazało się niełatwe ze względu na stosunkowo wysoką szybkość korozji w środowisku ludzkiego ciała. Problem ten da się jednak pokonać, stosując odpowiednie powłoki.
      W trakcie wieloletnich badań zauważono, że rozdrobnienie mikrostruktury materiałów nie tylko poprawia ich właściwości mechaniczne, ale może także wyraźnie zwiększyć odporność korozyjną. Dlatego międzynarodowy zespół naukowy, kierowany przez dr hab. Ewę Dryzek z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie, postawił sobie za cel ilościowe zbadanie wpływu powierzchniowej obróbki mechaniczno-ściernej SMAT (Surface Mechanical Attrition Treatment) komercyjnego magnezu na jego odporność korozyjną. W tej metodzie duża liczba twardych kulek o średnicy kilku milimetrów uderza w powierzchnię obrabianego materiału, powodując odkształcenie plastyczne warstwy przypowierzchniowej lub warstwy leżącej tuż pod nią. Odkształceniu plastycznemu towarzyszy wytworzenie dużej liczby defektów sieci krystalicznej.
      Do scharakteryzowania mikrostruktury zastosowano typowe techniki badawcze, np. mikroskopię świetlną i elektronową, dyfrakcję promieni rentgenowskich oraz elektronów rozproszonych wstecznie, a także pomiary mikrotwardości.
      Badania mikroskopowe ujawniły stopniowo zmieniającą się mikrostrukturę warstwy wierzchniej materiału powstałej podczas obróbki SMAT. Zaobserwowaliśmy znaczne rozdrobnienie ziaren w pobliżu obrobionej powierzchni. Głębiej widoczne były bliźniaki odkształcenia, których gęstość malała wraz ze wzrostem odległości od tej powierzchni – wyjaśnia dr hab. Dryzek.
      W ramach opisywanych prac po raz pierwszy użyto również spektroskopii anihilacji pozytonów PAS (Positron Annihilation Spectroscopy). Technika ta jest metodą nieniszczącą i pozwala na identyfikację defektów sieci krystalicznej na poziomie atomowym. Polega ona na tym, że gdy pozytony trafiające do próbki materiału napotykają swoje antycząstki – elektrony – anihilują i zamieniają się w fotony, które można rejestrować. Pozyton, który na swojej drodze znajdzie puste miejsce w sieci krystalicznej, może zostać schwytany, co wydłuża czas do momentu jego anihilacji. Pomiar czasu życia pozytonów daje badaczom obraz struktury próbki na poziomie atomowym.
      Celem zastosowania tej metody było, między innymi, uzyskanie informacji na temat rozkładu defektów sieci krystalicznej w warstwie powierzchniowej powstałej w wyniku obróbki SMAT, a także badanie warstwy materiału o grubości rzędu kilku mikrometrów, leżącej tuż pod obrobioną powierzchnią oraz powiązanie uzyskanych informacji z własnościami korozyjnymi. Jest to o tyle ważne, że defekty sieci krystalicznej determinują kluczowe właściwości materiałów. Z tego względu procedura ta znajduje również zastosowanie w metalurgii i technologiach półprzewodnikowych.
      Średni czas życia pozytonów w warstwie o grubości 200 mikrometrów, uzyskanej w wyniku trwającej 120 sekund obróbki SMAT, wykazuje wysoką stałą wartość 244 pikosekund. Oznacza to, że wszystkie emitowane ze źródła pozytony docierające do tej warstwy anihilują w defektach struktury, którymi są wakancje – czyli braki atomów w węzłach sieci krystalicznej – związane z dyslokacjami. Warstwa ta odpowiada silnie odkształconemu obszarowi z rozdrobnionymi ziarnami. Głębiej średni czas życia pozytonów maleje, co wskazuje na zmniejszającą się koncentrację defektów, osiągając w odległości około 1 milimetra od powierzchni wartość charakterystyczną dla dobrze wygrzanego magnezu o stosunkowo małej gęstości defektów struktury, który stanowił materiał porównawczy – opisuje szczegóły prac doktorant Konrad Skowron, główny autor artykułu i pomysłodawca badań.
      Proces SMAT w istotny sposób wpłynął także na zachowanie próbek magnezu podczas elektrochemicznych testów korozyjnych. Zmiany struktury wywołane przez SMAT zwiększyły podatność magnezu na utlenianie anodowe, intensyfikując tworzenie się powłoki wodorotlenkowej na powierzchni oraz w konsekwencji prowadząc do lepszej odporności na korozję. Potwierdzają to dane uzyskane dzięki użyciu wiązki pozytonów w Zjednoczonym Instytucie Badań Jądrowych w Dubnej. Wyniki pokazują, że oprócz granic ziaren i podziaren obecnych na powierzchni, także inne defekty krystaliczne, takie jak dyslokacje i wakancje, mogą odgrywać istotną rolę w zachowaniu korozyjnym magnezu.
      Obecnie prowadzimy analogiczne badania dla tytanu. Tytan jest metalem szeroko stosowanym w lotnictwie, motoryzacji, energetyce i przemyśle chemicznym. Służy również jako materiał do produkcji urządzeń i implantów biomedycznych. Ekonomicznie akceptowalna metoda, umożliwiająca uzyskanie czystego tytanu o mikrostrukturze gradientowej z ziarnem o wielkości nanometrycznej w warstwach przylegających do powierzchni, może otworzyć szersze perspektywy zastosowania tytanu w wyrobach ważnych dla gospodarki i dla poprawy komfortu życia człowieka – mówi dr hab. Dryzek.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tytan, księżyc Saturna, to niezwykłe miejsce. Jest to jedyny księżyc w Układzie Słonecznym, który posiada atmosferę. Jest większy niż Merkury, a jego powierzchnię pokrywają rzeki i morza płynnych węglowodorów. Pod nimi znajduje się zamarznięta woda, a pod lodem być może jest wodny ocean, w którym potencjalnie może istnieć życie. Przed wieloma laty naukowcy zauważyli, że Tytan powiększa swoją orbitę. Teraz wiemy, że oddala się on od Saturna 100-krotnie szybciej niż sądzono.
      Najnowsze badania, których wyniki opublikowano na łamach Nature Astronomy, wskazują zatem, że księżyc narodził się znacznie bliżej planety. Obecnie oba obiekty dzielą 1,2 miliony kilometrów. To trzykrotnie większa odległość niż między Ziemią a Księżycem.
      Autorzy większości wcześniejszych prac przewidywali, że księżyce takie jak Tytan czy Kalisto, księżyc Jowisza, powstały mniej więcej w takiej odległości od planety, w której znajdują się obecnie, mówi współautor badań, profesor Jim Fuller z Caltechu. Jednak najnowsze odkrycie wskazuje, że system księżyców Saturna oraz – potencjalnie – jego pierścienie, tworzyły się i ewoluowały bardziej dynamicznie, niż się przypuszcza.
      Warto przypomnieć, że nasz Księżyc również oddala się od Ziemi. Księżyc ma bowiem wpływ grawitacyjny na naszą planetę, co wywołuje m.in. pływy morskie. Wpływa on też na wnętrze Ziemi. Zachodzą tam procesy tarcia, w wyniku których część energii wpływu Księżyca zamieniana jest na energię cieplną. To zaburza pole grawitacyjne Ziemi, które „popycha” Księżyc. Ten zyskuje dzięki temu dodatkową energię, która powoduje, że oddala się od Ziemi w tempie około 3,8 centymetra na rok. To bardzo powolny proces. Na tyle powolny, że Księżyc nie zdąży uciec od Ziemi zanim oboje za 6 miliardów lat nie zostaną wchłonięci przez rozszerzające się Słońce.
      Podobny proces zachodzi pomiędzy Saturnem a Tytanem. Jednak dotychczas szacowano, że Tytan oddala się od Saturna w tempie 1 milimetra rocznie. Teraz wiemy, że jest to proces znacznie szybszy.
      Jak dowiadujemy się z Nature Astronomy, dwa zespoły naukowe wykorzystały różne techniki do pomiaru orbity Tytana w czasie 10 lat. Pierwszy z nich użył astrometrii, badając pozycję Tytana względem gwiazd w tle. Do badań posłużyły fotografie wykonane przez sondę Cassini. Drugi z zespołów posłużył się radiometrią, badając prędkość Cassini gdy ta znajdowała się pod wpływem grawitacyjnym Tytana.
      Używając dwóch niezależnych zestawów danych – astrometycznych i radiometrycznych – oraz dwóch różnych metod analitycznych, otrzymaliśmy w pełni zgodne wyniki, mówi główny autor badań, Valery Lainey z Obserwatorium Paryskiego. Sam Lainey pracował w zespole astrometrycznym.
      Co więcej wyniki pomiarów zgadzają się z hipotezą Fullera, który w 2016 roku zaproponował teorię, zgodnie z którą tempo migracji Tytana jest znacznie szybsze niż przewidywane na podstawie teorii o siłach pływowych. Zgodnie z tą teorią wpływ grawitacyjny Tytana powoduje ściskanie Saturna i wprawa planetę w silne oscylacje, podczas których pojawia się tyle energii, że Tytan ucieka od Saturna znacznie szybciej niż sądzono. I rzeczywiście. Obecne badania wykazały, że księżyc oddala się od planety w tempie 11 centymetrów rocznie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Politechnice Federalnej w Zurychu opracowano nową metodę wytwarzania plastycznych mikrostruktur, w tym stentów 40-krotnie mniejszych od możliwych do uzyskania za pomocą dotychczasowych technologii. W przyszłości zostaną one wykorzystane np. do rozszerzania zagrażających życiu zwężeń cewek moczowych u płodów.
      Szwajcarzy podkreślają, że zwężenie cewki moczowej rozwija się u ok. 1 dziecka na 1000, czasem dochodzi do tego jeszcze w łonie matki. Dzisiaj w takiej sytuacji chirurdzy operacyjnie usuwają nieprawidłowy fragment cewki. Bezpieczniej dla nerek byłoby jednak posłużyć się stentem, który poszerzałby krytyczne miejsce jeszcze w czasie życia płodowego.
      Stenty stosuje się w kardiologii interwencyjnej przy chorobie niedokrwiennej serca. Umieszcza się je wewnątrz naczynia, by przywrócić jego drożność. Struktury układu moczowego płodów są jednak o wiele mniejsze. Ponieważ za pomocą konwencjonalnych metod nie da się uzyskać tak niewielkich rozmiarów, chirurg pediatryczny Gaston De Bernardis z Kantonsspital Aarau poprosił o pomoc specjalistów z Multi-Scale Robotics Lab na Politechnice Federalnej w Zurychu. Zespół opracował nowa metodę produkcyjną, dzięki której udało się uzyskać struktury o średnicy poniżej 100 mikrometrów.
      Autorzy publikacji z pisma Advanced Materials Technologies nazywają tę technikę pośrednim drukiem 4D (ang. indirect 4-D printing). Jak tłumaczy Carmela De Marco, za pomocą promienia lasera tworzy się trójwymiarową matrycę (negatyw 3D). Następnie wypełnia się ją polimerem z pamięcią kształtu (ang. shape-memory polymer, SMP) i utrwala strukturę za pomocą ultrafioletu. Na końcu matrycę usuwa się za pomocą kąpieli w rozpuszczalniku - stent jest już gotowy. Czwarty wymiar zapewnia pamięć kształtu; nawet gdy materiał zostanie zdeformowany, pamięta, jak wygląda oryginalnie i ogrzany powraca do tej postaci.
      Polimery z pamięcią kształtu nadają się do leczenia zwężeń cewki moczowej. Skompresowany stent z SMP można by wprowadzić do przewężenia. Po implantacji wracałby on do pierwotnego kształtu, rozszerzając przy okazji zmieniony chorobowo odcinek układu moczowego - wyjaśnia De Bernardis.
      Podczas eksperymentów zespół De Marco stosował pośredni druk 4D nie tylko do produkcji stentów. W tych samych etapach produkowano też wypełnione magnetycznymi nanocząstkami hydrożelowe helisy. Po umieszczeniu w wirującym polu magnetycznym zaczynały one "pływać", przypominając sztuczne wici bakteryjne.
      Nim rozpoczną się testy kliniczne na ludziach, które pokażą, czy nowe stenty sprawdzają się w leczeniu wrodzonych wad układu moczowego u dzieci, konieczne są badania na modelach zwierzęcych. Dotychczasowe wyniki są jednak obiecujące. Jesteśmy przekonani, że nasze rezultaty torują drogę rozwojowi nowych narzędzi do chirurgii minimalnie inwazyjnej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tytan, największy księżyc Saturna, ma w pobliżu równika olbrzymi pas lodu. Większość powierzchni Tytana jest pokryta materiałem organicznym, który bez przerwy nań opada. Jednak teraz naukowcy stwierdzili, że w pobliżu równika istnieje tam długi na 6300 kilometrów pas lodu. Nie koreluje on ani z topografią ani budową pod powierzchnią. W innych regionach Tytana bogate w lód obszary występują tylko w kraterach, albo zostają odkryte wskutek erozji, co wskazuje na kriowulkanizm, piszą autorzy badań w Nature Astronomy.
      Na Tytanie znajdują się też oceany metanu oraz gruba atmosfera pełna organicznych molekuł. To właśnie przez nią trudno jest oglądać powierzchnię księżyca. Tylko kilka długości fali przenika przez atmosferę.
      Caitlin Griffith i jej koledzy z University of Arizona wykorzystali dane zebrane przez sondę Cassini do poszukiwania lodu. O ile już wcześniej było wiadomo, że regionalnie lód na Tytanie występuje, to istnienia długiego na tysiące kilometrów pasa lodu naukowcy nie potrafią wyjaśnić. Taka struktura powinna być ukryta pod setkami metrów osadów.
      Możliwe, że widzimy coś, z czasów, gdy Tytan był zupełnie inny. Obecnie nie potrafimy tego wyjaśnić, przyznaje Griffith. Obecnie Tytan jest nieaktywny pod względem geologicznym, ale odkryty właśnie pas lodu może wskazywać, że w przeszłości jego powierzchnia się przemieszczała.
      Zdaniem Griffith, lód prawdopodobnie występuje na klifach odsłoniętych przez erozję, a nie na płaskim terenie. Lepsze poznanie rozmieszczenia osadów organicznych opadających na powierzchnię księżyca dostarczyłoby nam wielu informacji nie tylko o samym Tytanie, ale również o historii jego atmosfery.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Envia Systems wyprodukowała najtańsze - w przeliczeniu na ilość przechowywanej energii - ogniwo dla samochodów elektrycznych. Dzięki niemu można będzie znacząco zwiększyć zasięg niedrogich pojazdów. Envia poinformowała, że gęstość energetyczna urządzenia wynosi 400 watogodzin na kilogram, a gotowe akumulatory zostaną wycenione na 125 USD za kilowatogodzinę pojemności. To z kolei oznacza, że samochód elektryczny za 20 000 dolarów będzie miał zasięg około 480 kilometrów na pojedynczym ładowaniu.
      W tym przemyśle gęstość energetyczna akumulatorów rośnie średnio o 5% rocznie. My ją podwoiliśmy, jednocześnie obniżając o połowę cenę, co pozwoli nam na wprowadzenie tych akumulatorów na masowy rynek pojazdów o zasięgu 300 mil - powiedział szef Envii, AtulKapadia.
      Nowe ogniwo zbudowane jest z krzemowo-węglowego nanokompozytu, który posłużył do stworzenia anody oraz z katody HCMR (High Capacity Manganese Rich). Udoskonalono także sam elektrolit. Wymiary urządzenia to 97x190x10 milimetrów, waga wynosi 365 gramów, a pojemność 46 Ah.
      O tym jak wiele osiągnęła Envia może świadczyć fakt, że najbliższym konkurentem jej urządzenia jest ogniowo firmy Panasonic montowane w samochodach Tesla Model S, którego gęstość wynosi 245 Wh/kg.
      Obecnie ogniwa Envii przechodzą niezależne testy w ośrodku marynarki wojennej. Na rynek mają trafić w 2015 roku.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...