Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Najnowsze badania magnezu torują drogę nowym materiałom biomedycznym

Recommended Posts

Materiały stosowane w biomedycynie muszą cechować się kontrolowaną biodegradowalnością, odpowiednią wytrzymałością i całkowitym brakiem toksyczności dla ludzkiego organizmu. Poszukiwanie takich materiałów nie jest więc prostym zadaniem. W tym kontekście naukowcy od dłuższego czasu interesują się magnezem. Wykorzystując między innymi spektroskopię anihilacji pozytonów, badaczom udało się wykazać, że magnez poddany powierzchniowej obróbce mechaniczno-ściernej uzyskuje niezbędne dla materiału biokompatybilnego właściwości.

W ostatnim czasie coraz większe zainteresowanie zyskują materiały korodujące w sposób kontrolowany. W szczególności dotyczy to biomedycyny, gdzie stosuje się implanty wykonane z polimerów naturalnych lub syntetycznych. Ich zaletą jest łatwość dostosowania szybkości rozkładu w warunkach fizjologicznych. Z drugiej strony, właściwości mechaniczne tych materiałów ulegają pogorszeniu w środowisku organizmu ludzkiego, przez co nie nadają się do zastosowań narażonych na duże obciążenia. Z tego powodu dobrym rozwiązaniem wydają się implanty metaliczne, stworzone na bazie całkowicie nieszkodliwego dla ludzkiego organizmu magnezu.

Ze względu na swoje właściwości mechaniczne, termiczne i elektryczne oraz biodegradowalność, a także kontrolowane tempo korozji, magnez wzbudza duże zainteresowanie badaczy zajmujących się biokompatybilnymi implantami. Pomimo tych zalet, zastosowanie magnezu jako biomateriału używanego przy produkcji implantów okazało się niełatwe ze względu na stosunkowo wysoką szybkość korozji w środowisku ludzkiego ciała. Problem ten da się jednak pokonać, stosując odpowiednie powłoki.

W trakcie wieloletnich badań zauważono, że rozdrobnienie mikrostruktury materiałów nie tylko poprawia ich właściwości mechaniczne, ale może także wyraźnie zwiększyć odporność korozyjną. Dlatego międzynarodowy zespół naukowy, kierowany przez dr hab. Ewę Dryzek z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie, postawił sobie za cel ilościowe zbadanie wpływu powierzchniowej obróbki mechaniczno-ściernej SMAT (Surface Mechanical Attrition Treatment) komercyjnego magnezu na jego odporność korozyjną. W tej metodzie duża liczba twardych kulek o średnicy kilku milimetrów uderza w powierzchnię obrabianego materiału, powodując odkształcenie plastyczne warstwy przypowierzchniowej lub warstwy leżącej tuż pod nią. Odkształceniu plastycznemu towarzyszy wytworzenie dużej liczby defektów sieci krystalicznej.

Do scharakteryzowania mikrostruktury zastosowano typowe techniki badawcze, np. mikroskopię świetlną i elektronową, dyfrakcję promieni rentgenowskich oraz elektronów rozproszonych wstecznie, a także pomiary mikrotwardości.

Badania mikroskopowe ujawniły stopniowo zmieniającą się mikrostrukturę warstwy wierzchniej materiału powstałej podczas obróbki SMAT. Zaobserwowaliśmy znaczne rozdrobnienie ziaren w pobliżu obrobionej powierzchni. Głębiej widoczne były bliźniaki odkształcenia, których gęstość malała wraz ze wzrostem odległości od tej powierzchni – wyjaśnia dr hab. Dryzek.

W ramach opisywanych prac po raz pierwszy użyto również spektroskopii anihilacji pozytonów PAS (Positron Annihilation Spectroscopy). Technika ta jest metodą nieniszczącą i pozwala na identyfikację defektów sieci krystalicznej na poziomie atomowym. Polega ona na tym, że gdy pozytony trafiające do próbki materiału napotykają swoje antycząstki – elektrony – anihilują i zamieniają się w fotony, które można rejestrować. Pozyton, który na swojej drodze znajdzie puste miejsce w sieci krystalicznej, może zostać schwytany, co wydłuża czas do momentu jego anihilacji. Pomiar czasu życia pozytonów daje badaczom obraz struktury próbki na poziomie atomowym.

Celem zastosowania tej metody było, między innymi, uzyskanie informacji na temat rozkładu defektów sieci krystalicznej w warstwie powierzchniowej powstałej w wyniku obróbki SMAT, a także badanie warstwy materiału o grubości rzędu kilku mikrometrów, leżącej tuż pod obrobioną powierzchnią oraz powiązanie uzyskanych informacji z własnościami korozyjnymi. Jest to o tyle ważne, że defekty sieci krystalicznej determinują kluczowe właściwości materiałów. Z tego względu procedura ta znajduje również zastosowanie w metalurgii i technologiach półprzewodnikowych.

Średni czas życia pozytonów w warstwie o grubości 200 mikrometrów, uzyskanej w wyniku trwającej 120 sekund obróbki SMAT, wykazuje wysoką stałą wartość 244 pikosekund. Oznacza to, że wszystkie emitowane ze źródła pozytony docierające do tej warstwy anihilują w defektach struktury, którymi są wakancje – czyli braki atomów w węzłach sieci krystalicznej – związane z dyslokacjami. Warstwa ta odpowiada silnie odkształconemu obszarowi z rozdrobnionymi ziarnami. Głębiej średni czas życia pozytonów maleje, co wskazuje na zmniejszającą się koncentrację defektów, osiągając w odległości około 1 milimetra od powierzchni wartość charakterystyczną dla dobrze wygrzanego magnezu o stosunkowo małej gęstości defektów struktury, który stanowił materiał porównawczy – opisuje szczegóły prac doktorant Konrad Skowron, główny autor artykułu i pomysłodawca badań.

Proces SMAT w istotny sposób wpłynął także na zachowanie próbek magnezu podczas elektrochemicznych testów korozyjnych. Zmiany struktury wywołane przez SMAT zwiększyły podatność magnezu na utlenianie anodowe, intensyfikując tworzenie się powłoki wodorotlenkowej na powierzchni oraz w konsekwencji prowadząc do lepszej odporności na korozję. Potwierdzają to dane uzyskane dzięki użyciu wiązki pozytonów w Zjednoczonym Instytucie Badań Jądrowych w Dubnej. Wyniki pokazują, że oprócz granic ziaren i podziaren obecnych na powierzchni, także inne defekty krystaliczne, takie jak dyslokacje i wakancje, mogą odgrywać istotną rolę w zachowaniu korozyjnym magnezu.

Obecnie prowadzimy analogiczne badania dla tytanu. Tytan jest metalem szeroko stosowanym w lotnictwie, motoryzacji, energetyce i przemyśle chemicznym. Służy również jako materiał do produkcji urządzeń i implantów biomedycznych. Ekonomicznie akceptowalna metoda, umożliwiająca uzyskanie czystego tytanu o mikrostrukturze gradientowej z ziarnem o wielkości nanometrycznej w warstwach przylegających do powierzchni, może otworzyć szersze perspektywy zastosowania tytanu w wyrobach ważnych dla gospodarki i dla poprawy komfortu życia człowieka – mówi dr hab. Dryzek.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Defekty w kryształach, zwłaszcza dyslokacje krawędziowe o charakterze długich uskoków, wpływają na strukturę całego materiału i modyfikują jego podstawowe właściwości, redukując możliwości zastosowań. Fizycy z Krakowa i Warszawy pokazali na przykładzie kryształu węglika krzemu, że nawet tak wymagające obliczeniowo defekty można z powodzeniem badać z dokładnością atomową za pomocą umiejętnie skonstruowanego modelu.
      Matematyka kocha perfekcję. Niestety, perfekcja nie kocha fizycznej rzeczywistości. Teoretycy zajmujący się modelowaniem kryształów od dawna próbowali uwzględniać defekty występujące w prawdziwych strukturach krystalicznych i przewidywać ich wpływ na właściwości fizyczne materiałów. Modele, bazujące na wynikach różnych eksperymentów, opisywały zmiany podstawowych własności materiału bez wyjaśniania rzeczywistych przyczyn i skutków zaistniałych zjawisk. Dopiero nowy model węglika krzemu (SiC), zbudowany przez fizyków z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, pozwolił zademonstrować, że już dziś można "z pierwszych zasad" modelować kryształy nawet z tak złożonymi defektami jak dyslokacje krawędziowe i wyjaśniać ich cechy procesami zachodzącymi w skali atomowej. Spektakularny rezultat, omawiany podczas niedawnej konferencji Multis 2019 w Krakowie i opublikowany w czasopiśmie Journal of Materials Science, krakowscy fizycy osiągnęli we współpracy z ulokowanymi w Warszawie Instytutem Podstawowych Problemów Techniki PAN i Instytutem Wysokich Ciśnień PAN.
      Staraliśmy się poznać na poziomie atomowym mechanizmy odpowiedzialne za obniżanie się prądu przebicia w kryształach węglika krzemu. Nasze obliczenia, wywodzące się z "pierwszych zasad", prowadzą ku jakościowemu zrozumieniu problemu i przyczyniają się do wyjaśnienia szczegółów tego zjawiska - mówi dr hab. Jan Łażewski, prof. IFJ PAN.
      Obliczenia "z pierwszych zasad" mają długą historię związaną z Nagrodą Nobla dla Waltera Kohna i Johna Pople'a w 1998 roku (do symulacji defektów w kryształach wprowadzono je jednak niedawno). Pojęciem tym określa się obliczenia przeprowadzane z użyciem równań mechaniki kwantowej, wsparte jedynie wiedzą o budowie atomu i symetrii kryształów. W podejściu tym nie ma żadnych bezpośrednich informacji z eksperymentów, co oznacza, że z jego pomocą można analizować również takie materiały, których jeszcze nikt nigdy nie badał, a nawet nie zsyntetyzował. Ze względu na dużą komplikację zagadnienia, do tej pory obliczenia z pierwszych zasad stosowano jedynie do zaburzeń punktowych, związanych z wakansami (brakami atomów, czyli dziurami w strukturze krystalicznej) lub domieszkami wprowadzanymi do kryształu.
      Krakowscy badacze nie bez przyczyny zajęli się węglikiem krzemu. Właściwości tego półprzewodnika są tak interesujące, że kiedyś uważano go nawet za następcę krzemu. Jego przerwa energetyczna (bariera, którą musi pokonać ładunek żeby przedostać się z pasma walencyjnego do pasma przewodnictwa i brać udział w przewodzeniu prądu) jest niemal trzykrotnie większa niż w krzemie, dopuszczalna gęstość prądu przewodzenia – dwukrotnie, zdolność do odprowadzania ciepła – ponadtrzykrotnie, a graniczna częstotliwość pracy kryształu – aż sześciokrotnie. Mało tego, układy wykonane z węglika krzemu mogą pracować w temperaturach do 650 stopni Celsjusza, podczas gdy układy krzemowe zaczynają mieć problemy już przy 120 stopniach. SiC ma także wysoką temperaturę topnienia, jest twardy, odporny na kwasy i promieniowanie. Do jego wad należy przede wszystkim cena: o ile dwucalowe płytki krzemowe kosztują zaledwie kilka dolarów, wartość podobnych płytek z węglika krzemu trzeba liczyć w tysiącach. Kryształy węglika krzemu o niskiej jakości to popularny materiał ścierny, stosowany również w kamizelkach kuloodpornych i w tarczach hamulcowych najdroższych samochodów świata, takich jak Lamborghini czy Bugatti. Wysokiej jakości kryształy służą do wyrobu zwierciadeł teleskopów i elementów wysokonapięciowych urządzeń o dużej odporności na temperaturę.
      Na poziomie atomowym kryształy węglika krzemu są zbudowane z wielu ułożonych jedna na drugiej płaskich warstw. Każda warstwa przypomina plaster miodu: składa się z sześciokątnych komórek, w których narożnikach są ulokowane pionowo cząsteczki węglika krzemu. Każde dwie sąsiednie warstwy można połączyć na trzy sposoby. Wielowarstwowe "kanapki" o różnych wzajemnych ułożeniach tworzą tzw. modyfikacje politypowe, których w przypadku węglika krzemu jest ponad 250. Grupa z IFJ PAN zajmowała się politypem oznaczonym jako 4H-SiC.
      Przy modelowaniu tego typu struktur jednym z podstawowych problemów jest złożoność obliczeniowa. Model kryształu czystego, pozbawionego domieszek czy dyslokacji, charakteryzuje się dużą symetrią i można go przeliczyć nawet w kilka minut. Żeby zrobić rachunek dla materiału z dyslokacją, potrzebujemy już całych miesięcy pracy komputera o dużej mocy obliczeniowej - podkreśla dr hab. Paweł Jochym, prof. IFJ PAN.
      Kłopoty z dyslokacjami krawędziowymi wynikają ze skali ich wpływu na strukturę krystaliczną materiału. Obrazowo można je porównać do problemów z zamaskowaniem braku części jednego rzędu płytek w posadzce. Wyrwę można "zabliźnić", przesuwając płytki sąsiadujących rzędów, ale defekt pozostanie zawsze widoczny. Dyslokacje krawędziowe, wynikające z braku całych ciągów lub połaci atomów/cząsteczek w poszczególnych warstwach kryształu, działają podobnie, wpływając na położenia atomów i cząsteczek w wielu sąsiednich warstwach. A ponieważ dyslokacje mogą się rozciągać na znaczne odległości, w praktyce wywołane nimi zaburzenia obejmują cały kryształ.
      Najciekawsze zjawiska zachodzą w rdzeniu dyslokacji, a więc w bezpośrednim sąsiedztwie krawędzi uszkodzonej warstwy sieci krystalicznej. Aby wyeliminować dalekozasięgowe efekty, wywołane pojedynczą dyslokacją, a tym samym znacznie ograniczyć liczbę rozważanych atomów, zastosowano trik: wprowadzono drugą dyslokację, o przeciwnym działaniu. W ten sposób skompensowano oddziaływanie pierwszej dyslokacji na większych odległościach.
      Model kryształu SiC składał się z około 400 atomów. Przeprowadzone symulacje wykazały, że w warstwach kryształów, wzdłuż krawędzi rdzenia defektu, pojawiają się "tunele" w formie kanałów o zmniejszonej gęstości ładunku. Obniżają one lokalnie barierę potencjału i powodują, że ładunki elektryczne mogą "wyciekać" z pasma walencyjnego. Dodatkowo w przerwie wzbronionej, która w izolatorze gwarantuje brak przewodzenia prądu elektrycznego, pojawiają się stany redukujące jej szerokość i skuteczność w ograniczaniu przepływu ładunku. Wykazano, że stany te pochodzą od atomów ulokowanych w rdzeniu dyslokacji.
      Sytuację można porównać do głębokiego, stromego wąwozu, który próbuje pokonać wiewiórka. Jeśli dno wąwozu jest puste, wiewiórka nie przedostanie się na drugą stronę. Jeśli jednak na dnie rośnie pewna liczba odpowiednio wysokich drzew, wiewiórka może po ich wierzchołkach przeskoczyć na drugą stronę wąwozu. W modelowanym przez nas krysztale wiewiórką są ładunki elektryczne, pasmo walencyjne to jedna krawędź wąwozu, pasmo przewodnictwa – druga, a drzewami są wspomniane stany związane z atomami rdzenia dyslokacji - mówi prof. Łażewski.
      Teraz, gdy mechanizmy odpowiedzialne za obniżanie progu bariery energetycznej stały się znane na poziomie atomowym, pojawiło się ogromne pole do popisu dla eksperymentatorów. Zaproponowany mechanizm trzeba będzie zweryfikować, by później móc go użyć do ograniczenia negatywnego wpływu badanych defektów. Na szczęście istnieją już odpowiednie ku temu możliwości techniczne.
      Przyszłość zweryfikuje, czy nasze pomysły zostaną potwierdzone w całości. Jesteśmy jednak spokojni o losy naszego modelu i zaprezentowanego podejścia do symulowania dyslokacji krawędziowych. Już teraz wiemy, że model "z pierwszych zasad" sprawdził się w konfrontacji z niektórymi danymi eksperymentalnymi - podsumowuje prof. Jochym.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nikiel jest jednym z najbardziej rozpowszechnionych pierwiastków na Ziemi. Co ważne, jest wysoce odporny na korozję, dzięki czemu znajduje zastosowanie na wielu polach.
      Jednak zaskakujące odkrycie dokonane przez naukowców z Texas A&M University wskazuje, że nikiel nie tylko ulega korozji, ale proces ten przebiega w sposób, którego naukowcy się nie spodziewali. O badaniach prowadzonych przez zespół profesora Michaela Demkowicza poinformowano na łamach Physical Reveiew Materials.
      Korozja zwykle atakuje połączenia czy też granice pomiędzy ziarnami materiału. To tzw. korozja międzykrystaliczna, która osłabia metal od wewnątrz.
      Istnieje jednak pewien szczególny typ granicy między ziarnami metalu, zwany koherentną granicą bliźniaczą, o którym sądzono, że jest on odporny na korozję. Tymczasem, ku zdumieniu naukowców z Teksasu, okazało się, że niemal cała korozja występująca w prowadzonych przez nich eksperymentach pojawiła się właśnie na koherentnych granicach bliźniaczych. To odkrycie odwraca do góry nogami dekady założeń dotyczących przebiegu korozji metali, mówi Demkowicz.
      Koherentne granice bliźniacze to obszary, na których wewnętrzna struktura wzorców materiału jest swoim lustrzanym odbiciem wzdłuż całej takiej granicy. Tego typu granice powstają naturalnie wskutek krystalizacji, mogą być też wynikiem oddziaływań mechanicznych bądź termicznych.
      Czysty nikiel jest niemal całkowicie odporny na korozję. Gdy jednak podaliśmy napięci od stron katody, która jest jeszcze mniej podatna na korozję, odkryliśmy ku swojemu zdumieniu widoczne znaki korozji na koherentny;ch granicach bliźniaczych, mówi Mengying Liu, jeden z członków zespołu badawczego. To odkrycie pozwoli przewidzieć, gdzie może pojawić się korozja. Być może dzięki temu zostaną zaprojektowane metale bardziej odporne na korozję, dodaje.
      Przez dziesięciolecia specjaliści zakładali, że koherentne granice bliźniacze są odporne na korozję. Dlatego też pracowali nad metalami zawierającymi jak najwięcej takich granic. Próbując zapobiegać korozji tworzono metale zawierające tak dużo koherentnych granic bliźniaczych jak to tylko było możliwe. Teraz musimy przemyśleć tę strategię, stwierdza Demkowicz.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uczeni z Virginia Commonwealth University poinformowali o odkryciu nowej klasy superatomów, czyli stabilnych klastrów atomów, które wykazują właściwości innych pierwiastków  tablicy okresowej. Wspomniane superatomy zawierają magnetyczne atomy magnezu, pierwiastku, który naturalnie nie wykazuje właściwości magnetycznych.
      Nowo odkryte klastry składają się z jednego atomu żelaza i ośmiu atomów magnezu. Magnez wykazuje właściwości magnetyczne dzięki obecności żelaza.
      Nasze badania otwierają nową drogę do nadawania właściwości magnetycznych pierwiastkom naturalnie niemagnetycznych poprzez ich połączenie z pojedynczym magnetycznym atomem. Ważnym elementem jest odkrycie, jaka kombinacja atomów prowadzi do powstania stabilnego połączenia i umożliwia zestawienie razem wielu takich pierwiastków - powiedział Shiv N. Khanna, profesor na Wydziale Fizyki.
      Nowy klaster wykazuje się momentem magnetycznym rzędu czterech magnetonów Bohra, czyli jest on niemal dwukrotnie większy niż moment magnetycznych atomu żelaza w stałych magnesach z tego pierwiastka. Jedynie dziewięć pierwiastków z tablicy okresowej wykazuje właściwości magnetyczne w formie ciała stałego.
      Takie połączenie pierwiastków, jakie znaleźliśmy, może prowadzić do znaczących postępów na polu elektroniki molekularnej, gdyż tego typu struktury umożliwiają sterowanie przepływem elektronów o konkretnej orientacji spinu, co jest bardzo pożądane np. w komputerach kwantowych. Takie molekularne urządzenia prawdopodobnie pozwolą też stworzyć gęstsze zintegrowane urządzenia, umożliwić szybsze przetwarzanie danych i zapewnić inne korzyści - mówi Khanna.
    • By KopalniaWiedzy.pl
      W Lawrence Berkeley National Laboratory powstał nowy kompozytowy materiał, który ułatwi przechowywanie wodoru. Składa się on z nanocząsteczek metalicznego magnezu naniesionych na poli(metakrylan metylu). Najważniejszą właściwością kompozytu jest możliwość szybkiego wiązania i uwalniania wodoru w niewysokich temperaturach bez jednoczesnego występowania zjawiska utleniania metalu. To bardzo ważny krok, znacznie udoskonalający metody przechowywania wodoru na potrzebny produkcji energii.
      Nasza praca dowodzi, że jesteśmy w stanie zaprojektować nanokompozytowe materiały, które pokonują podstawowe bariery termodynamiczne i kinetyczne - mowi Jeff Urban, jeden z autorów badań. W pracach nad kompozytem brali też udział Christian Kisielowski, Ki-Joon Jeon, Anne Ruminski, Hoi Ri Moon i Rizia Bardhan.
      Szczegółowe informacje na temat nowego kompozytu zostały ujawnione w artykule "Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without heavy metal catalysts" w Nature Materials.
    • By KopalniaWiedzy.pl
      Najnowsze badania pokazują, że podwyższony poziom magnezu w mózgu usprawnia pamięć i uczenie u młodych oraz starszych szczurów. Oznacza to, że zwiększenie podaży magnezu również w przypadku ludzi stanowi wartościową strategię wspomagania zdolności poznawczych. Prawdziwa jest też zapewne odwrotna zależność i zbyt niski poziom tego pierwiastka przyspiesza pogorszenie pamięci u starzejących się osób (Neuron).
      Profesor Guosong Liu, dyrektor Centrum Uczenia i Pamięci z Tsinghua University w Pekinie, podkreśla, jak ważne jest zidentyfikowanie dietopochodnych czynników, które korzystnie oddziałują na synapsy – rejony komunikacji między neuronami.
      Magnez jest kluczowy dla właściwego funkcjonowania wielu tkanek [i narządów] organizmu, m.in. mózgu. We wcześniejszym studium zademonstrowaliśmy, że sprzyja on plastyczności synaptycznej w hodowlach neuronów. Stąd pomysł na kolejne badania i sprawdzenie w następnym kroku, czy zwiększenie mózgowego poziomu magnezu poprawia funkcjonowanie poznawcze zwierząt.
      Za pomocą doustnych suplementów trudno podwyższyć stężenie magnezu w mózgu, dlatego Chińczycy musieli uzyskać nowy związek - L-treonian magnezu (MgT). Sól magnezową niezbędnego aminokwasu podawano gryzoniom w różnym wieku. Liu utrzymuje, że Mg wspomagał wiele różnych form uczenia oraz pamięci u młodszych i starszych zwierząt.
      Dogłębna analiza zmian na poziomie komórki wykazała, że zwiększyła się liczba funkcjonujących synaps oraz natężenie procesów synaptycznych związanych z pamięcią krótko- i długotrwałą. Nasiliła się również aktywność kluczowych neuroprzekaźników.
      Szczury z grupy kontrolnej jadły paszę z poziomem magnezu zaspokajającym obowiązujące normy. Zmiany zaobserwowane w grupie eksperymentalnej były skutkiem podaży pierwiastka przewyższającej tę z normalnej diety.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...