Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Rekin jak piłka golfowa

Recommended Posts

Naukowcy odkryli, że rekiny potrafią regulować położenie łusek na ciele, tworząc niewielkie wgłębienia, podobne do tych, jakie widzimy na powierzchni piłeczki golfowej. Jak wykazały badania, te miniaturowe "studnie" pozwalają zwierzęciu na osiągnięcie większej prędkości w wodzie.

Zespół z University of Alabama, pracujący pod przewodnictwem Amy Lang, stworzył sztuczną skórę rekina. Składała się na nią matryca ze sztucznych łusek (16x24 łuski) o długości 2 centymetrów każda. W łuskach znajdowały się wgłębienia. Skórę umieszczono w pojemniku z wodą, przesuwającą się z prędkością 20 cm/s. Woda zawierała pokryte srebrem nanocząsteczki, które oświetlano laserem, obserwując w jaki sposób woda opływa łuski.

Okazało się, że nad skórą rekina tworzą się niewielkie pionowe wiry. Dzięki temu pomiędzy powierzchnią skóry a wodą powstaje rodzaj bufora, który zapobiega tworzeniu się turbulencji za płynącym zwierzęciem. Takie turbulencje spowalniają płynące obiekty i utrudniają manewrowanie.

Naukowcy z Alabamy uważają, że ich badania pomogą w konstruowaniu doskonalszych torped, łodzi czy samolotów, które będą lepiej radziły sobie z poruszaniem się w wodzie i powietrzu.

Share this post


Link to post
Share on other sites

Proszę mnie poprawić, ale czy badania nad podobną budową wierzchniej warstwy ciała delfinów były prowadzone już wcześniej? I wcześniej już twierdzono, że badania te wpłyną na budowę ludzkich pojazdów.

Swoją drogą przy okazji dowiedziałem się, że rekiny też mają łuski (nie wszystkie, ale jednak), do tej pory przekonany byłem że rekiny i łuski nie pływają parami :D

Share this post


Link to post
Share on other sites

A ja mam wrażenie, że oba artykuły traktują o nieco różnych sprawach.

 

U delfinów mieliśmy do czynienia z kostnymi wyrostkami na krawędzi natarcia płetw. Tyle, że były to wyrostki dość spore, a do tego nieruchome. Tutaj mamy jedynie drobną fakturkę na powierzchni samego materiału, a do tego jest to fakturka "ustawiana" przez samego rekina. Wydaje mi się, że ta wiedza jest komplementarna, ale nie dubluje się :D

Share this post


Link to post
Share on other sites

W umyśle ludzkim drzemie ogromny potencjał, ale i tak rozwiązania powstałe w wyniku ewolucji są zazwyczaj bardziej optymalne od rozwiązań człowieka. Dlatego należy dużo "podglądać" przyrodę :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z University of Southern California znaleźli niezwykły dowód na interakcję pomiędzy stworzeniami morskimi a latającymi z epoki dinozaurów. Na kościach pterozaura przechowywanych w Los Angeles County Natural History Museum znajdują się ślady świadczące o tym, że zwierzę zostało upolowane przez rekina.
      Zrozumienie ekologii tych zwierząt jest ważne dla zrozumienia historii życia na Ziemi, mówi główny autor badań, profesor Michael Habib. Czy obecnie żyją rekiny polujące na ptaki morskie? Tak. Czy to unikatowa umiejętność, czy też rekiny polują na stworzenia latające od milionów lat? Teraz wiemy, że rekiny polowały na latające zwierzęta już 80 milionów lat temu, stwierdza uczony.
      Pod koniec kredy Ameryka Północna była przedzielona Morzem Środkowego Zachodu (Morzem Kredy). Miało ono długość 3200 kilometrów w kierunku północ-południe i 970 kilometrów szerokości. Jego głębokość była mniejsza niż 1000 metrów. Morze rozciągało się pomiędzy Zatoką Meksykańską a północną Kanadą. Tam, gdzie niegdyś było jego dno, znajduje się obecnie jedne z najlepiej zachowanych skamieniałości.
      Wspomniany pterodaktyl został wykopany w latach 60. w regionie Smoky Hill Chalk w Kansas. Naukowców intrygował ząb rekina, który utkwił w kości. Było to niezwykłe odkrycie, gdyż na ponad 1100 znalezionych okazów Pteranodona, gatunku pterozaura, jedynie na 7 widać ślady interakcji z drapieżnikami.
      Pteranodony były dużymi stworzeniami. Rozpiętość ich skrzydeł sięgała 6 metrów i ważyły około 50 kilogramów. Mogły latać na duże odległości, żywiły się rybami i były zdolne do startu i lądowania na powierzchni wody.
      Naukowcy chcieli się dowiedzieć, który z morskich drapieżników zabił pteranodona, jak do tego doszło i dlaczego kości kręgosłupa szyjnego pozostały nietknięte.
      Najpierw musieli wykluczyć, że ząb rekina utkwił w ciele Pteranodona przypadkiem, gdy oba zwierzęta padły w tym samym miejscu. Okazało się, że ząb tkwi dokładnie pomiędzy kręgami, co wskazywało na ugryzienie. Zidentyfikowano go jako ząb Cretoxyrhhina mantelli, rekina rozpowszechnionego w tym samym czasie, co pteranodon. Był to duży, bardzo szybki i silny drapieżnik. Ten osobnik miał około 4 metrów długości, a wyglądem i zachowaniem przypominał dzisiejszego żarłacza białego, chociaż nie jest z nim spokrewniony.
      Szczęśliwie dla nauki, rekin chwycił pterozaura za szyję, a jego ząb utkwił idealnie pomiędzy kręgami i się złamał. Można przypuszczać, że zwierzę zostało upolowane na powierzchni wody. Wtedy pteranodon był najłatwiejszą zdobyczą, gdyż start zajmował mu dużo czasu. Wiemy, że duże rekiny żywiły się pterozaurami, możemy więc stwierdzić, że szybki duży drapieżnik mógł upolować tego Pteranodona, gdy ten był na powierzchni wody, stwierdził Habib.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Choć kukurydza nie była wtedy podstawowym pokarmem, jedzono ją w Ameryce Południowej o 1000 lat wcześniej niż dotąd sądzono. Co więcej, nawet w postaci prehistorycznego popcornu. Zwalczany obecnie przez dietetyków zwyczaj chrupania prażonych ziaren nie jest więc wcale wymysłem naszych czasów. Jak można się domyślić, odkrycie to bardzo podekscytowało archeologów.
      Kolby, łodygi, łupiny i znamiona, których wiek określono w czasie datowania na 6700-3000 lat, znaleziono w Paredones i Huaca Prieta na północnym wybrzeżu Peru. Poza tym natrafiono na mikroskamieniałości, m.in. ziarna skrobi. Pracami wykopaliskowymi kierowali Tom Dillehay z Vanderbilt University i Duccio Bonavia z peruwiańskiej Narodowej Akademii Historii.
      Badanie kolb ujawniło, że przed ok. 7 tys. lat dawni mieszkańcy Ameryki Południowej jadali kukurydzę na kilka sposobów, także w postaci wspomnianego na wstępie popcornu i produktów z mąki kukurydzianej.
      Kukurydza powstała ok. 9 tys. lat temu w Meksyku, prawdopodobnie w wyniku krzyżowania dzikiej trawy teosinte (Euchlaena luxurians) i przedstawiciela rodzaju Tripsacum. Zaledwie parę tysięcy lat później przybyła do Ameryki Południowej, gdzie rozpoczęła się ewolucja różnych odmian, które są obecnie popularne w rejonie Andów. Dowody wskazują, że na wielu obszarach kukurydza pojawiła się przed ceramiką i że wczesne eksperymenty z kukurydzą jako pożywieniem były niezależne od obecności naczyń - podkreśla dr Dolores Piperno ze Smithsonian Tropical Research Institute, współautorka artykułu opublikowanego w Proceedings of the National Academy of Sciences.
    • By KopalniaWiedzy.pl
      Skwalamina, związek występujący naturalnie u koleni, może być bezpieczną i skuteczną bronią przeciw ludzkim wirusom. Działa na szerokie ich spektrum, od wywołujących dengę czy żółtą febrę wirusów z rodziny Flaviviridae poczynając, a na wirusach zapalenia wątroby typu A, B i C kończąc.
      Skwalamina przeszła testy kliniczne jako środek stosowany w terapii onkologicznej (jest bowiem inhibitorem proliferacji i migracji komórek śródbłonka, hamuje też angiogenezę, czyli powstawanie naczyń zaopatrujących nowotwór w krew) oraz w różnych chorobach oka, np. zwyrodnieniu plamki żółtej czy retinopatii cukrzycowej. Naukowcy znają już jej właściwości, dlatego mogłaby być stosunkowo szybko przebadana jako nowa klasa czynników przeciwwirusowych. Zarówno w eksperymentach laboratoryjnych, jak i na zwierzętach zademonstrowano jej skuteczność w odniesieniu do flawiwirusów czy HAV, HBV i HCV.
      Stwierdzenie, że skwalamina oddziałuje na szerokie spektrum wirusów, jest bardzo ekscytujące, zwłaszcza że z toczących się obecnie studiów tyle wiemy o jej zachowaniu u ludzi – cieszy się dr Michael Zasloff z Centrum Medycznego Georgetown University.
      Badania Amerykanów pozwalają odpowiedzieć na pytanie, jak rekiny i minogi z ich prymitywnymi układami odpornościowymi radzą sobie z różnymi wirusami. Zasloff sądzi, że zawdzięczają to właśnie skwalaminie i spokrewnionym z nią związkom. Skwalamina wydaje się zabezpieczać przed wirusami atakującymi wątrobę i tkanki krwi, a inne podobne substancje, o których wiemy, że występują u rekinów, chronią prawdopodobnie przed wirusowymi zakażeniami dróg oddechowych. Badacz ma nadzieję, że uda się wykorzystać opisane związki do leczenia ludzi. To byłaby rewolucja. Podczas gdy istnieje wiele czynników antybakteryjnych, by pomóc swoim pacjentom, lekarze dysponują zaledwie kilkoma lekami przeciwwirusowymi. W dodatku niewiele z nich wykazuje szerokie spektrum działania.
      Zasloff odkrył skwalaminę w 1993 r., kiedy był profesorem pediatrii i genetyki na Uniwersytecie Pensylwanii. Szukał wtedy nowych środków przeciwbakteryjnych. Podczas eksperymentów szybko zorientował się, że skwalamina ma właściwości, które można wykorzystać w leczeniu chorób nowotworowych czy oczu. Od 1995 r. skwalamina jest syntetyzowana w laboratorium, dzięki czemu nie wykorzystuje się naturalnych tkanek koleni.
      Amerykanin ustalił, że cząsteczka skwalaminy przypomina cholesterol i ma dodatni ładunek netto. Gdy dostaje się do komórek (a może wejść tylko do niektórych: komórek naczyń oraz wątroby), usuwa białka o ładunku dodatnim z ujemnie naładowanej wewnętrznej błony komórkowej. Niektóre z przemieszczonych białek są wykorzystywane przez wirusy do namnażania. Bez nich wirus pozostaje nieczynny, a zawierająca go komórka ulega zniszczeniu. Zasloff podkreśla, że skwalamina wydaje się dostosowywać czasowanie swojej aktywności do cykli wirusów. Ustanawia wirusooporność tkanek i narządów w czasie identycznym do czasu zamknięcia się cyklu wirusa. Szybko zahamowuje namnażanie, oczyszczając organizm z wirusów w ciągu zaledwie kilku godzin.
      Akademicy podkreślają, że nie należy się obawiać, że z czasem wirusy wykształcą oporność, ponieważ skwalamina nie obiera na cel określonych białek patogenów, ale zmniejsza receptywność komórek docelowych.
      Podczas testów na hodowlach komórkowych skwalamina hamowała zakażenie komórek ludzkich naczyń wirusem dengi oraz komórek ludzkiej wątroby wirusami HAV, HBV i HCV. W badaniach na zwierzętach za pomocą skwalaminy kontrolowano m.in. infekcję żółtą febrą, wirusem wschodniego końskiego zapalenia mózgu i mysim wirusem cytomegalii.
    • By KopalniaWiedzy.pl
      Do roku 2050 z oceanów mogą zniknąć wielkie ryby. Tak uważa Villy Christensen z Centrum Rybołówstwa University of British Columbia. Wielkim drapieżnikom - rekinom, tuńczykom i dorszom - grozi zagłada z powodu nadmiernych połowów.
      Już teraz zmniejszenie ich liczebności doprowadziło do dwukrotnego zwiększenia populacji małych, żywiących się planktonem gatunków, takich jak sardynki, sardele i kapelany.
      Tam, gdzie znikają drapieżniki, liczba ich dotychczasowych ofiar szybko rośnie, zagrażając równowadze całego ekosystemu. Gatunki te stają się podatne na choroby i pojawiające się naprzemiennie cykle przyrostów i spadków liczebności. Cykle takie powodują, że gdy ryby masowo wymierają, dochodzi do rozkwitu alg i pojawienia się bakterii zużywających olbrzymie ilości tlenu. To z kolei powoduje pojawianie się kolejnych martwych stref w oceanie.
      Christensen uważa, że należy namawiać ludzi na rezygnację z jedzenia dużych ryb drapieżnych na rzecz spożywania mało obecnie popularnych sardynek czy śledzi.
      Badania, zaprezentowane na dorocznym spotkaniu American Association for the Advancement of Science przeprowadzono na podstawie analizy ponad 68 000 zestawów danych dotyczących stanu ponad 200 ekosystemów morskich z lat 1880-2007.
    • By KopalniaWiedzy.pl
      Najnowsze badania naukowców z USA pokazują, że jeden z gatunków rekinów – ostronos atlantycki (Isurus oxyrinchus) – dysponuje elastycznymi łuskami, które ułatwiają wykonywanie ostrych skrętów przy dużych szybkościach. Szanse potencjalnej zdobyczy na ucieczkę są naprawdę mizerne, zważywszy że rekin mknie z maksymalną prędkością nawet 97 km/h!
      Ostronosy dokonują tego właśnie dzięki przypominającym zęby łuskom, które pomagają im kontrolować oderwanie przepływu (w innym razie turbulencje i różnice ciśnienia wywołują tarcie spowalniające szybko poruszające się obiekty, np. statki, samoloty czy nasze rekiny). Jak podkreśla współpracująca z zespołem z Uniwersytetu Południowej Florydy (USF) i Mote Marine Laboratory dr Amy Lang of the University of Alabama, oderwanie przepływu zmniejsza nie tylko prędkość, ale i stabilność.
      Jeśli przyjrzeć się skórze zwierząt, widać, że nie jest ona gładka i pokrywają ją wzory. Dlaczego? Jednym z powszechnych zastosowań powierzchniowych wzorów jest kontrolowanie przepływu [powietrza, wody itp.]. Spójrzmy na wgłębienia piłeczki golfowej, które pomagają jej polecieć dalej. Sądzimy, że łuski szybko pływających rekinów służą temu samemu celowi – kontrolowaniu oderwania przepływu.
      W oparciu o pomiary w czasie eksperymentów, kiedy to biolodzy zmieniali ciśnienie oddziałujące na skórę martwych ostronosów, i modelując łuski rekinów, zespół Lang stwierdził, że podstawy łusek ostronosów są w miejscu przyczepu do skóry cieńsze niż na szczycie. Zwężenie zezwala na skręcenie o 60 stopni lub więcej.
      Co ważne, zębopodobne łuski znajdują się na ciele wyłącznie tam, gdzie z największym prawdopodobieństwem dochodzi do oderwania przepływu, czyli np. po bokach za skrzelami. Amerykanie mają nadzieję, że badając dalej zjawisko falowania wyrostkowatymi łuskami, uda się ulepszyć projekty różnych urządzeń i pojazdów, np. turbin wiatrowych czy łopat helikopterów.
      Lang uważa, że ostronosy atlantyckie wyewoluowały, by być oceanicznymi odpowiednikami gepardów. Muszą się szybko poruszać, jeśli chcą upolować swój ulubiony smakołyk – tuńczyka. Gdy ryba przebija się przez wodę, w pewnych miejscach wokół jej ciała ciecz zaczyna się poruszać w odwrotnym kierunku niż główny nurt wody. Na szczęście zostaje ona przechwycona przez zwężające się łuski, nie dopuszczając do uogólnionego oderwania przepływu wokół ciała rekina.
×
×
  • Create New...