Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W listopadowym numerze pisma Microbiology ukazała się informacja o odkryciu paliwa produkowanego przez... grzyby. Pewien ich gatunek produkuje węglowodory, które można bez żadnych modyfikacji zastosować we współczesnych silnikach.

Związki chemiczne wytwarzane przez Gliocladium roseum są niezwykle podobne do paliwa dieslowskiego. To jedyny organizm, o którym wiemy, że produkuje tak ważny zestaw substancji mogących służyć jako paliwo. Byliśmy zaskoczeni, gdy dowiedzieliśmy się, że wytwarza on tyle różnych węglodowodorów - mówi Gary Strobel z Montana State University, który badał grzyby.


Gliocladium roseum żyją wewnątrz drzewa Eucryphia cordifolia występującego na północy Patagonii. Grzyby wytwarzają węglowodory, które są tak podobne do paliwa samochodowego, iż można by bez żadnej obróbki zastosować je w silnikach. Mają one bardzo wysoką gęstość energetyczną, czego nie można powiedzieć o węglowodorach produkowanych np. przez algi. Strobel już nazywa nowe paliwo "mycodieslem". Dodaje, że Gliocladium roseum mają jeszcze jedną, bardzo ważną właściwość. Otóż żywią się one celulozą, a ta jest powszechnie dostępna jako materiał odpadowy po różnych procesach przemysłowych. Tak więc grzyby mogą nie tylko dostarczyć paliwo, ale też pomogą pozbyć się wielu odpadów.

Oczywiście potrzebnych jest jeszcze wiele badań, które dadzą odpowiedź na pytanie, czy produkcja paliwa przez Gliocladium roseum jest w ogóle opłacalna.

Share this post


Link to post
Share on other sites

Osobiście to uważam ze ludzkość potrzebuje alternatywnych rozwiązań energetycznych, np ze źródeł odnawialnych.

Puki co zasada działania ludzkości jest prosta, spal i uzyskaj energie....

Przy obecnym zaludnieniu niedługo będzie trudno znaleźć coś do spalenia!!!

Share this post


Link to post
Share on other sites

Zawsze będzie można palić ludzi - albo przynajmniej produkty ich przemiany materii :D

Jeśli produkcja mycodiesla będzie opłacalna na skalę przemysłową, to skąd weźmiemy jako ludzkość tyle celulozy ? Rozumiem, że celuloza jest w pewnych gałęziach przemysłu odpadem poprodukcyjnym, ale chyba nie aż tyle żeby zaspokoić jakąś znaczną część rynku dieslowego.

Share this post


Link to post
Share on other sites

No ale przeciez cos co daje sie zasadzic jest nie jako zrodlem odnawialnym.

Share this post


Link to post
Share on other sites
W listopadowym numerze pisma Microbiology ukazała się informacja o odkryciu paliwa produkowanego przez... rośliny. Pewien gatunek grzybów produkuje węglowodory, które można bez żadnych modyfikacji zastosować we współczesnych silnikach.

 

Ciekawe od kiedy grzyby należą do roślin. Chyba że dla dzieci, które ze straszną prawdą brutalnie stykają się w 4 klasie na przyrodzie :D

Share this post


Link to post
Share on other sites

Ciekawe od kiedy grzyby należą do roślin. Chyba że dla dzieci, które ze straszną prawdą brutalnie stykają się w 4 klasie na przyrodzie :)

 

Ech... głupota + pośpiech = grzyby to rośliny

 

Dzięki :D

Share this post


Link to post
Share on other sites

No ale przeciez cos co daje sie zasadzic jest nie jako zrodlem odnawialnym.

Niby racja, ale gdzieś to trzeba sadzić. Zastanawiałem się czy mamy na tyle celulozy (ewentualnie czy łatwo i tanio - również tanio ekologicznie - możemy tyle wyprodukować) aby zaspokoić tak chłonny rynek.

Share this post


Link to post
Share on other sites

Czy zaspokoić całkowicie, tego powiedzieć nie umiem. Ale na pewno jest to gigantyczna ilość energii dostępnej na wyciągnięcie ręki. Jeśli zostanie odpowiednio zagospodarowana, ma szansę stać się naprawdę istotnym elementem rynku energii.

Share this post


Link to post
Share on other sites
żywią się one celulozą, a ta jest powszechnie dostępna jako materiał odpadowy po różnych procesach przemysłowych.

 

Celuloza jest palna sama w sobie , brak potrzeby hodowania grzybów.

Share this post


Link to post
Share on other sites

Celuloza jest palna sama w sobie , brak potrzeby hodowania grzybów.

Już widzę te samochody z wozem celulozy za sobą - potrzebnej do spalania w silniku. Trzeba jeszcze rozróżnić spalanie dwóch różnych paliw od ich kaloryczności.

Share this post


Link to post
Share on other sites

Z tym, że spalając celulozę można by uzyskiwać energię elektryczną. Wszystko zależy od sprawności ew. prądnicy na celulozę oraz silnika na gaz (a raczej ich stosunku).

Share this post


Link to post
Share on other sites

Każda konwersja paliwa ma straty, więc z gazu będzie mniej energi , plus syf z grzybami.

jakiego gazu? zawsze myślałem ze paliwo dieslowskie jest płynne... :|

poza tym nawet jeśli byłoby mniej energii to nadal jest to łatwiejsze w transporcie więc może wyjść taniej, no i może być tak że umiemy mniej energii zmarnować podczas spalania diesle niż celulozy. Poza tym nawet nie wiesz czy przeprowadzją reakcję endo- czy egzoenergetyczną...

Share this post


Link to post
Share on other sites

Ja sobie po prostu nie wyobrażam ile potrzeba by celulozy na to aby zastąpić pięćdziesięcio litrowy bak z paliwem. Podejrzewam też, że łatwiej spalać paliwo płynne niż stałe w tak ograniczonych gabarytowo silnikach jakie mamy w autach. Chociaż na tym się nie znam.

W fabrykach, elektrowniach, kotłowniach to inna sprawa.

Share this post


Link to post
Share on other sites
no i może być tak że umiemy mniej energii zmarnować podczas spalania diesle niż celulozy.

 

Przypomnę tylko że celulozą jest np: kartka papieru lub tekturowe opakowanie, koperta, paragon ze sklepu. Już widzę jak z każdym z tych papierków biegniesz do przedpokoju otwierasz grzybowy reaktor (wcześniej maska bo zarodniki i smród) wrzucasz te papierki a w nagrodę kap do kubka kropelka oleju ty z nią biegniesz do baku twego samochodu , tankujesz i jedziesz i jedziesz i jedziesz (słownie po pomyśle reaktora grzybowego oczywiście) 8)

 

Poza tym nawet nie wiesz czy przeprowadzją reakcję endo- czy egzoenergetyczną...

 

Widziałeś grzyby które rosną przy minus dwadziescia (np:na śniegu) bo palącą się bibułkę (celulozową) na papierosie to ja widziałem (nie mówiąc o tym że kominek na celulozę chodzi).

Share this post


Link to post
Share on other sites

W fabrykach, elektrowniach, kotłowniach to inna sprawa.

A ludzkość myślę, że będzie dążyć do zelektryzowania transportu... W każdym bądź razie, myślę, że najwięcej energii uzyska się podczas jak najmniej skomplikowanego procesu przemian energetycznych (grzybki też na czymś w końcu jadą).

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed 2,5 miliardami lat, zanim w atmosferze Ziemi pojawił się tlen, jej skład wielokrotnie się zmieniał, przechodząc pomiędzy stanem atmosfery bogatej w węglowodory i pozbawionej tych związków.
      Zdaniem uczonych z Newcastle University, taka huśtawka składu jest podobna do procesów zachodzących obecnie na Tytanie, księżycu Saturna, a jej przyczyną była działalność mikroorganizmów.
      Używane dotychczas modele wskazywały, że wczesna atmosfera Ziemi mogła zostać ogrzana przez rodzaj organicznej mgły. Przeprowadziliśmy geochemiczne analizy osadów, które dowiodły istnienia takiego zjawiska. Jednak zamiast długotrwałego ‚mglistego’ okresu znaleźliśmy sygnały wskazujące, że dochodziło raczej do huśtawki zmian w składzie, spowodowanej działalnością mikroorganizmów - mówi doktor Aubrey Zerkle. To daje nam wgląd we wczesną atmosferę Ziemi, jeszcze sprzed okresu wzbogacenia jej w tlen, i pokazuje, jak ważną rolę odgrywał wówczas metan - dodaje.
      Naukowcy przeanalizowali liczące sobie 2,65-2,5 miliarda lat osady z południa Afryki. Znaleźli dowody, że mikroorganizmy żyjące w oceanach produkowały tlen, jednak izotopy węgla i siarki wskazują, iż niewiele z tego tlenu przedostawało się do atmosfery.
      Z badań wynika również, że ciągłe wahania składu skończyły się, gdy do atmosfery przedostała się wystarczająca ilość tlenu.
      Najbardziej zdumiewającym odkryciem jest fakt, że te zmiany były nieciągłe. Atmosfera przechodziła od jednego stabilnego stanu, w drugi stan stabilny. To przypomina procesy klimatyczne, które zachodzą obecnie, i pokazuje, jak bardzo delikatna równowaga może istnieć pomiędzy różnymi stanami atmosfery - dodaje współautor badań, doktor James Farquhar z University of Maryland.
    • By KopalniaWiedzy.pl
      Włoskie Ministerstwo Ochrony Środowika oceniło, że rośnie niebezpieczeństwo katastrofy ekologicznej u wybrzeży Półwyspu Apenińskiego. Zbiorniki statku wycieczkowego Costa Concordia, który rozbił się o skały w pobliżu wyspy Giglio, są wypełnione 2300 tonami paliwa.
      Ryzyko dla środowiska jest bardzo, bardzo wysokie. Naszym celem jest zapobieżenie wyciekowi. Pracujemy nad tym, ale mamy coraz mniej czasu - powiedział minister Corrado Clini.
      Wokół Giglio istnieje naturalny park morski, znany ze zróżnicowanej fauny i flory, przejrzystych wód i świetnych warunków do nurkowania. Jak mówi Clini, władze nie wykluczają wprowadzenia stanu wyjątkowego, co pozwoliłoby na wykorzystanie funduszy przewidzianych na tego typu okoliczności.
      Największe zagrożenie dla statku stanowi pogarszająca się pogoda. Ratownicy obawiają się, że fale zepchną jednostkę w stronę pobliskiego zbocza i Costa Concordia zsunie się o kilkadziesiąt metrów wgłąb wód Morza Śródziemnego. Jeden z ekspertów, pracujących na miejscu katastrofy, stwierdził, że na razie statek mocno trzyma się na skałach, jednak fale z pewnością go przesuną.
      Zauważono już wyciek ze statku, jednak na razie nie wiadomo, czy jest to paliwo. Na wszelki wypadek ustawiono bariery ochronne. Paliwo, z którego korzysta Costa Concordia jest bardzo gęste i trudno jest je wypompować bez uprzedniego podgrzania. Jego usunięciem i likwidacją ewentualnego wycieku ma zająć się holenderska firma SMIT.
      Okazało się też, że ekolodzy od dawna przestrzegali przed tego typu katastrofą. Od lat walczyli, by wielkim statkom nie wolno było pływać w pobliżu Wysp Toskańskich (Giglio, Montecristo, Pianosa, Elba, Capraia i Gorgona). Minister Clini zgadza się z opinią organizacji ekologicznych, mówiąc, że propozycja trzymania wielkich jednostek z dala od tak cennych przyrodniczo i kulturowo obszarów to głos zdrowego rozsądku.
    • By KopalniaWiedzy.pl
      Na Rensselaer Polytechnic Institute trwają testy nowej obiecującej architektury do przechowywania wodoru. Nanoostrza mogą być używane wielokrotnie, bardzo szybko uwalniają i przyjmują wodór, a pracują przy znacznie niższych temperaturach niż podobne systemy. Dzięki tym właściwościom mogą okazać się przydatne przy konstruowaniu samochodów napędzanych wodorem.
      Pierwsze nanoostrza na bazie magnezu stworzono w 2007 roku. W przeciwieństwie do nanowłókien są one asymetryczne. W jednym wymiarze są niezwykle wąskie, w innym bardzo szerokie. Pomiędzy nimi jest do 1 mikrometra wolnej przestrzeni.
      Przechowywanie wodoru wymaga zastosowania dużych powierzchni. Dzięki temu, że nanoostrza są asymetryczne, można tę duża powierzchnię uzyskać.
      Nanoostrza stworzono metodą chemicznego osadzania pod kątem z fazy gazowej. Nanostruktura jest uzyskiwana poprzez doprowadzenie materiału - w tym przypadku magnezu - do fazy gazowej, a następnie umożliwienie mu osadzania się na podłożu. Po ukończeniu procesu osadzania na powierzchni materiału umieszcza się metaliczne kryształy, które więżą wodór. Prototypowe ostrza pokryto palladem.
      Departament Energii wysoko zawiesił poprzeczkę dla technologii przechowywania wodoru. Wszystkie nowe materiały muszą pracować w niskich temperaturach, szybko uwalniać wodór, mieć rozsądną cenę oraz nadawać się do recyklingu - mówi Yu Liu, jeden z badaczy.
      Naukowcy odkryli, że nanoostrza uwalniają wodór już w temperaturze 67 stopni Celsjusza. Przy temperaturze 100 stopni Celsjusza cały wodór zostaje uwolniony w zaledwie 20 minut. Inne technologie wymagają zastosowania ponaddwukrotnie wyższej temperatury, by tak szybko uwolnić wodór.
      Badania przeprowadzone za pomocą dyfrakcji odbiciowej wysokoenergetycznych elektronów (RHEED - reflection high-energy electron diffraction) oraz temperaturowo programowalnej desorpcji (TPD - temperature programmed desorption) wykazały, że prototypowe nanoostrza są w stanie wytrzymać ponad 10 cykli ładowania i rozładowywania.
      Naukowcy będą teraz pracowali nad wydłużeniem żywotności ostrzy, gdyż wiedzą już, jaka jest przyczyna ich stopniowej degradacji.
    • By KopalniaWiedzy.pl
      Naukowcy z Rice University dowodzą, że siatka stworzona z karbynu z dołączonym wapniem, może przechowywać znacznie więcej wodoru, niż przewidują wyznaczone przez Departament Energii normy dla samochodów napędzanych wodorem.
      Karbyn to pojedynczy łańcuch atomów węgla. To forma, którą uzyskamy, gdy z płachty grafenu wyciągniemy jedną nitkę. Do niedawna był on uznawany za bardzo egzotyczny materiał, jednak udowodniono, że może być syntetyzowany i pozostaje stabilny w temperaturze pokojowej, co czyni go potencjalnym kandydatem do codziennych zastosowań.
      Fizyk teoretyczny profesor Boris Yakobson z Rice University zwraca uwagę, że inne formy węgla, takie jak nanorurki, grafen czy fullereny, przechowują wodór tylko w niskich temperaturach. Tymczasem, jak stwierdził uczony, dzięki połączeniu karbynu z wapniem możliwe jest przechowywanie wodoru w temperaturze pokojowej. W wypełnionej wodorem siatce z karbynu wodór może teoretycznie stanowić około 50% wagi. Tymczasem DoE zakłada, że do roku 2015 w strukturach służących do przechowywania wodoru dla samochodów wodór powinien stanowić co najmniej 6,5% wagi.
      Decydującym elementem, dzięki czemu całość tak dobrze działa, jest dodanie wapnia. Dzięki niemu powstają takie łączenia między atomami, że przechowywanie wodoru jest możliwe w temperaturze pokojowej. Jako, że atomy wapnia nie mają tendencji do łączenia się w grupy, co pozwala na rozłożenie ich w formie podobnej do winogron na siatce z karbenu i dołączenie do każdego atomu wapnia sześciu atomów wodoru, co na początku umożliwi uzyskanie pojemności rzędu 8% wodoru na jednostkę wagi.
      Zdaniem Yakobsona istnieje wiele różnych możliwości zwiększania pojemności karbenowo-wapniowego zbiornika. Na przykład ułożenie siatki karbynu w kształt diamentu pozwoli co prawda na przyłączenie do atomu wapnia pięciu atomów wodoru, ale dzięki manipulacji liczbą atomów węgla można zwiększać pojemność całości. Być może uda się też wyciągać wzbogacane wapniem nitki karbynu z grafenu.
      Yakobson mówi, że w tej chwili trudno jednoznacznie wyrokować, która z teoretycznych strategii sprawdzi się najlepiej. Jestem optymistą. Z teoretycznego punktu widzenia oraz opierając się na wiedzy zdobytej podczas doświadczeń z syntezą karbynu i pracy z metalowymi organicznymi ramkami do przechowywania wodoru, mogę przypuszczać, że miną 2-3 lata zanim wyprodukujemy karbynową siatkę, a 1-2 lat zajmie nam opracowanie takich metod umieszczania na niej wapnia, by osiągnąć materiał zdolny do przechowywania dużej ilości wapnia. Tak więc w ciągu 3-5 lat możemy mieć wyprodukowaną próbkę i później będzie można, dzięki intensywnej pracy i mając nieco szczęścia, skalować ją do produkcji przemysłowej - mówi uczony.
    • By KopalniaWiedzy.pl
      Naukowcy z australijskiego Monash University we współpracy z uczonymi z Uniwersytetu Kalifornijskiego w Davis wpadli na trop odkrycia, które może pozwolić na opracowanie taniego i prostego sposobu rozkładu wody na tlen i wodór. To pozwoliłoby na pozyskiwanie wodoru i wykorzystywanie go jako paliwa.
      Profesor Leone Spiccia z Monash mówi, że celem badań było znalezienie sposobu na tani rozkład wody na tlen i wodór przy użyciu energii słonecznej. Uczeni zaczęli szczegółowo badać różne techniki katalizy, chcąc jak najlepiej naśladować procesy wykorzystywane przez rośliny. Wówczas zauważyli, że być może istnieje prostszy sposób.
      Najtrudniejszym elementem pozyskiwania paliwa z wody jest rozbicie jej na wodór i tlen. Nasz zespół opracował ogniwo korzystające z katalizatora bazującego na manganie i, jak się wydaje, odkrył w ten sposób odpowiednią metodę. Okazało się, że całą pracę wykonuje birnezyt [jeden z tlenków manganu - red.]. Podobnie jak inne elementy ze środka tablicy okresowej, mangan może istnieć w wielu stopniach utlenienia. W tym przypadku odpowiadają one liczbie atomów tlenu, z którymi może być połączony atom metalu - mówi Spiccia.
      Gdy do ogniwa podłączyliśmy napięcie elektryczne, doszło do rozbicia wody na tlen i wodór, a gdy naukowcy przyjrzeli się całemu procesowi za pomocą zaawansowanych metod spektroskopowych okazało się, że mangan rozłożył się na znacznie prostszy materiał zwany birnezytem. Jest on dobrze znany geologom jako czarny nalot na wielu skałach - dodaje uczony.
      Podczas całego cyklu mangan przechodzi na zmianę w dwa stopnie utlenienia. Najpierw za pomocą prądu elektrycznego zmienia się z manganu(II) w mangan(IV) w birnezycie. Następnie pod wpływem promieni słonecznych powraca do manganu(II). Dzięki tej przemianie manganu dochodzi do utlenienia wody oraz produkcji gazowego tlenu, protonów i elektronów.
      Doktor Rosalie Hocking, która brała udział w badaniach, mówi, że tak może wyglądać naturalny biogeologiczny cykl obiegu manganu w oceanach, a to z kolei może pomóc nam zrozumieć procesy zachodzące w roślinach, które wykorzystują właśnie mangan. Naukowcy czynili olbrzymie wysiłki w kierunku stworzenia bardzo skomplikowanych molekuł zawierających mangan, by naśladować rośliny. Tymczasem okazało się, że chodzi o powszechnie występujący materiał, który jest na tyle trwały, że wytrzymuje intensywne użytkowanie - mówi Hocking.
      Cała reakcja przebiega w dwóch etapach. Najpierw dwie molekuły wody są utleniane, tworząc molekułę tlenu (O2), cztery protony i cztery elektrony. Następnie protony i elektrony łączą się tworząc dwie molekuły wodoru (H2).
      Uczeni mają nadzieję, że z czasem ich odkrycie doprowadzi do powstania taniej metody pozyskiwania wodoru.
×
×
  • Create New...