Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Nazwa firmy "Complete Genomics" nie jest obecnie zbyt szeroko rozpoznawalna. Wygląda jednak na to, że możemy o niej usłyszeć jeszcze wiele razy. Przedstawiciele przedsiębiorstwa planują uruchomienie usługi sekwencjonowania genomu człowieka za przełomową cenę 5000 dolarów.

Udostępnienie usługi klientom indywidualnym jest planowane na najbliższą wiosnę. Firma, mająca swoją siedzibę w kalifornijskim mieście Mountain View, opracowała technologię sekwencjonowania DNA pozwalającą na drastyczne obniżenie kosztów przeprowadzenia tego procesu. Dzięki jej wdrożeniu cena procedury spadła aż dwudziestokrotnie(!) w porównaniu do cen obowiązujących dotychczas.

Ułatwiony dostęp do usługi sekwencjonowania jest najważniejszym krokiem na drodze do tzw. medycyny spersonalizowanej. Zgodnie z jej założeniami, lekarz powinien mieć dostęp do danych o indywidualnych cechach pacjenta, dzięki czemu możliwe jest zoptymalizowanie sposobu leczenia, dawek podawanych leków itp. Dotychczas zbieranie informacji tego typu ograniczało się do pojedynczych genów, które analizowane były głównie w przypadku podejrzenia zwiększonego ryzyka wystąpienia ściśle okreslonej choroby. Teraz, gdy cena badania spadła do tej stosunkowo niedużej kwoty, istnieje ogromna szansa na zebranie znacznie większej ilości danych i wprowadzenie szeroko zakrojonych programów profilaktyki wielu chorób.

Przedstawiciele firmy planują, że w roku 2009 będzie ona w stanie przeprowadzić 1000 reakcji sekwencjonowania DNA, zaś w ciągu kolejnego roku zwiększy swoje "moce przerobowe" dwudziestokrotnie. Warto jednak zaznaczyć, że przedstawiciele Complete Genomics nie udostępnili jeszcze swoich danych żadnemu niezależnemu recenzentowi.

Jednym z założycieli firmy jest Craig Venter - prawdopodobnie najbardziej znany biotechnolog na świecie. Ponieważ naukowiec pracował już wcześniej nad projektem sekwencjonowania genomu człowieka, zebrane wówczas informacje służą dziś jako próba odniesienia wobec nowej technologii. Co ciekawe, jako materiał do badań wykorzystano wówczas własne DNA Ventera.

Aby przeprowadzić sekwencjonowanie DNA zgodnie z założeniami nowej metody, najpierw zostaje ono pocięte na krótkie fragmenty składające się z 80 nukleotydów, czyli jednostek kodujących informację genetyczną (cały genom ma ich aż 3 miliardy). Każdy z tych fragmentów jest następnie łączony z krótkimi syntetycznymi nićmi DNA, a następnie dochodzi do replikacji powstałych kompleksów z wykorzystaniem specjalnego enzymu. Ze względu na charakter fizykochemiczny syntetycznego fragmentu, ma on tendencję do bardzo ścisłego zwijania się do postaci zwanej nanopiłeczkami. Są one tak drobne, że na płytce o wielkości typowego szkiełka mikroskopowego mieści się ich około miliarda. Dzięki tak silnemu "upakowaniu" materiału genetycznego możliwe jest przeprowadzenie całej procedury na pojedynczej płytce, co pozwala na radykalną redukcję zużycia bardzo drogich odczynników.

Gdy nanopiłeczki zostaną osadzone na powierzchni szkiełka, przeprowadza się właściwą reakcję sekwencjonowania. W tym celu wykorzystuje się cząsteczki wzbogacone o barwniki fluorescencyjne. Każda z nich przyłącza się do DNA w losowym miejscu, lecz zawsze do ściśle określonego rodzaju nukleotydu. Powstałe kompleksy oświetla się następnie za pomocą lampy ultrafioletowej, by wywołać świecenie barwnych cząsteczek. Specjalna aparatura pozwala nie tylko na określenie, jaki nukleotyd został związany, lecz także na ustalenie jego pozycji w analizowanej sekwencji. W ten sposób, krok po kroku, możliwe jest odkrycie kolejności wszystkich elementów kodujących informację genetyczną danego osobnika. Schemat ilustrujący całą procedurę jest dostępny tutaj.

Losowe przyłączanie pojedynczych cząsteczek służących jako "sondy" wykrywające nukleotydy jest pomysłem bardzo nowatorskim. Ma ono co najmniej jedną istotną zaletę: zgodnie z założeniami dotychczasowych metod sekwencjonowania konieczne było poprawne odczytanie sekwencji wszystkich kolejnych nukleotydów. Powodowało to powstawanie licznych błędów w trakcie analizy, przez co wiarygodność testu spadała. W przypadku technologii opracowanej przez Complete Genomics każda "sonda" przyłącza się niezależnie od innych, dzięki czemu maleje ryzyko popełnienia "lawiny" błędów.

Co ciekawe, przedstawiciele Complete Genomics nie planują sprzedaży produkowanych przez siebie urządzeń. Zamiast tego uruchomione zostanie ogromne centrum badawcze, w którym realizowana będzie ta usługa. Jak tłumaczy prezes firmy, Cliff Reid, będzie to rozwiązanie bardzo wygodne dla wielu przedsiębiorstw: oni nie chcą kupować własnego instrumentu, chcą kupić dane. Co ciekawe jednak, sekwencja DNA klienta będzie do niego wracała w postaci "surowej", tzn. bez jakiejkolwiek analizy informacji zapisanych w genach. Oznacza to, niestety, że całkowity koszt usługi będzie najprawdopodobniej powiększony o dopłatę związaną z analizą danych przez innego specjalistę. 

Środowisko naukowe nie kryje podziwu dla tego osiągnięcia. Chad Nusbaum, jeden z dyrektorów zarządzających Programem Sekwencjonowania i Analiz Genomu uruchomionym przez Broad Institute, ocenia: nagle ci goście zaczęli mówić o sekwencjonowaniu setek, a nawet tysięcy genomów w ciągu kilku najbliższych lat. Otwiera to niesamowite perspektywy na taki rodzaj nauki, jakiego naprawdę chcemy. Jest to możliwe właśnie dzięki uzyskiwaniu setek sekwencji ludzkiego genomu. Od tego momentu można zacząć zadawać trudne pytania na temat genetyk człowieka.

Podobnego zdania jest Jeffrey Schloss, specjalista pracujący dla amerykańskiego Narodowego Instytutu Badań nad Ludzkim Genomem: Słowo "oszałamiające" wcale nie będzie zbyt wielkie, jeżeli będą mogli to zrobić w naprawdę krótkim czasie. Nie widziałem jednak jakichkolwiek danych i nie znam nikogo, kto by je widział, a jest to, oczywiście, kluczowe.

Wyścig trwa. Biotechnologiczny gigant, firma Applied Biosystems, planuje udostępnienie w najbliższej przyszłości platformy, dzięki której możliwe będzie przeprowadzenie kompletnej analizy genomu za około 10 tysięcy dolarów. Która z firm wygra tę rywalizację, dowiemy się prawdopodobnie w ciągu najbliższych kilku lat.

Share this post


Link to post
Share on other sites

Obiecujące są też techniki fizyczne - praktycznie bez cięcia próbujemy odczytać kolejne nukleotydy. Na przykład przykleić łańcuch do powierzchni i odczytać mikroskopem sił atomowych. Bardziej praktycznie wygląda używając tzw. nanoporów - wymuszamy różnicą potencjałów przechodzenie pojedyńczej nici przez cieńką szczelinę i używając wbudowanych w nią elektrod odczytujemy kolejne zasady. Niestety takie pory wymagają koszmarnej precyzji i na razie chyba działają tylko na komputerach...

 

A może dałoby się wykorzystać naturalne białka kopiujące/transkrybujące DNA ... zamocować i jakoś elektrycznie/magnetycznie czytać w jakim są aktualnie stanie...

Share this post


Link to post
Share on other sites

Mnie tylko jedno dość mocno zastanawia. W jaki sposób oni to robią, że te nanopiłeczki układają się na szkiełku w jakimś określonym porządku (względnie: w jaki sposób maszyna odgaduje, w jakiej kolejności się rozłożyły)? Czy chodzi o jakąś sekwencję na syntetycznej nici, która kotwiczy do ściśle okreslonego miejsca na płytce, czy jak? W artykule źródłowym ani słowa na ten temat ;)

Share this post


Link to post
Share on other sites

Jakto? ;) "Millions of these overlapping pieces are then computationally stitched together to generate the entire sequence."

To jest gigantyczna praca komputera - szukać identycznych fragmentów w nakrywających się ciągach i łączyć je w jeden wielki...

Pytanie jak otrzymują ciągi o długości mniej więcej 80 zasad ... restryktazami chyba ciężko tak precyzyjnie? Wygląda jakby mieli enzym który wycina pojedyńczy histon?

Share this post


Link to post
Share on other sites

Odcinki pomiędzy histonami mają po 180 pz, więc raczej ciężko jest mi to sobie wyobrazić. Poza tym ten cytat też nie do końca tłumaczy całe zagadnienie - przecież nawet jeśli odczytasz zawartość każdej piłeczki poprawnie, nie wiesz jeszcze, w jakiej kolejności należy odczytywać same piłeczki. No, chyba, że na płyce masz w rzeczywistości piłęczki zawierające kilka kopii genomu i możesz sobie z nich złożyć całość. A sondy może i nakładają się na siebie, ale każda z nich wykrywa tylko jeden nukleotyd, więc nakładanie się sond jeszcze nie oznacza, że można tak łatwo ustalić kolejność wszystkich nukleotydów. Co innego gdyby sonda wykrywała np. kilka sąsiednich nukleotydów, ale wykrywa tylko jeden, a reszta to uniwersalny kontekst, taki "zapychacz".

Share this post


Link to post
Share on other sites

Dany fragment pokrywa kilka z takich ciągów ("overlapping"), więc jeśli jakaś sekwecja się powtarza, możemy z dużym prawdopodobieństwem stwierdzić że to kontynuacja...

Owszem - to nie takie proste - na pewno są błędy podczas odczytywania, wiele sekwencji (szczególnie intronowych) ma wiele powtórzeń... za to mamy już kilka ludzkich DNA zsekwencjonowanych, co może pomóc we wstępnej lokalizacji fragmentu ...

 

Z histonami to chyba rzeczywiście przesadziłem ;) ... wystarczy przecież pociąć byle jak a potem jednowymiarową elektroforezą wybrać wymagane długości ... tylko żeby rzeczywiście dostać ładny overlapping...

Share this post


Link to post
Share on other sites

Czyli jednak wyjdzie na to, że rzeczywiście na jednej płytce, podczas jednej analizy, znajduje się kilka kopii jednego genomu. To by wyjaśniało wszystko, a nie jest to jasno napisane w artykule źródłowym.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii sąd federalny nakazał udostępnienie policji całej bazy danych DNA, w tym profili, których właściciele nie wyrazili zgody na udostępnienie.
      Od czasu, gdy w ubiegłym roku policja – po przeszukaniu publicznej bazy danych DNA – schwytała seryjnego mordercę sprzed dziesięcioleci, udało się dzięki takim bazom rozwiązać wiele nierozstrzygniętych spraw. Jednak działania policji budzą zastrzeżenia dotyczące prywatności. We wrześniu Departament Sprawiedliwości, by rozwiać te obawy, wydał instrukcję, zgodnie z którą policja może przeszukiwać tego typu bazy danych wyłącznie w sprawach o przestępstwa związane z użyciem przemocy oraz tam, gdzie właściciel profilu wyraził zgodę.  Już zresztą wcześniej, bo w maju witryna GEDmatch, na którą każdy może wgrać swój profil DNA, ograniczyła policji dostęp do tych profili, których właściciele wyrazili zgodę. Tym samym liczba profili DNA do których policja ma dostęp na GDAmatch spadła z 1,3 miliona do zaledwie 185 000.
      Pewien policyjny detektyw z Florydy prowadzi śledztwo w sprawie seryjnego gwałciciela. Uznał, że dostęp jedynie do 185 000 profili z GEDmatch to zbyt mało i wystąpił do sądu z wnioskiem, by ten, nakazał witrynie udostępnienie mu całej bazy. Detektyw ma nadzieję, że jacyś krewni gwałciciela wgrali tam informacje o swoim DNA, dzięki którym uda się znaleźć sprawcę. Sędzia przychylił się do prośby detektywa. Wyrok taki od razu wzbudził kontrowersje.
      Prawnicy mówią, że to, czy właściciele profili mają powody do zmartwień zależy od prowadzenia każdej ze spraw i trudno jest na tym etapie wyrokować, jak rozstrzygnięcie sądu ma się do amerykańskiego prawa. Zwracają jednak uwagę, że GEDmatch to niewielka firma. Mimo to posiadana przez nią baza 1,3 miliona profili oznacza, że w bazie tej znajduje się profil kuzyna trzeciego stopnia lub kogoś bliżej spokrewnionego z 60% białych Amerykanów.
      Firmy takie jak 23andMe czy Ancestry posiadają znacznie bardziej rozbudowane bazy, a zatem pozwalają na sprofilowanie znacznie większej liczby obywateli USA. Zresztą 23andMe już zapowiedziała, że jeśli otrzyma podobny wyrok to będzie się od niego odwoływała. Prawnicy zauważają, że z jednej strony, jeśli w przyszłości pojawi się takie odwołanie i rozpocznie się batalia sądowa, którą będzie rozstrzygał jeden z Federalnych Sądów Apelacyjnych lub Sąd Najwyższy, to ustanowiony zostanie silny precedens. Z drugiej strony osoba, która zostałaby oskarżona dzięki przeszukaniu takiej bazy mogłaby zapewne powoływać się na Czwartą Poprawkę, która zakazuje nielegalnych przeszukań.
      Specjaliści mówią, że jeśli podobne wnioski zaczną pojawiać się coraz częściej i sądy będą się do nich przychylały, to będzie to poważny problem dla witryn z bazami danych DNA.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmers obalili teorię mówiącą, że obie nici DNA są utrzymywane przez wiązania atomów wodoru. Okazuje się, że kluczem są siły hydrofobowe, nie atomy wodoru. Odkrycie to może mieć duże znaczenie dla medycyny i innych nauk biologicznych.
      Helisa DNA składa się z dwóch nici zawierających molekuły cukru i grupy fosforanowe. Pomiędzy obiema nićmi znajdują się zasady azotowe zawierające atomy wodoru. Dotychczas sądzono, że to wiązania atomów wodoru utrzymują razem obie nici.
      Jednak uczeni z Chalmers wykazali właśnie, że kluczem do utrzymania razem nici jest hydrofobowe wnętrze molekuł zanurzonych w środowisku składającym się głównie z wody. Zatem mamy tutaj hydrofilowe otoczenie i hydrofobowe molekuły odpychające otaczającą je wodę. Gdy hydrofobowe molekuły znajdują się w hydrofilowym środowisku, grupują się razem, by zmniejszyć swoją ekspozycję na wodę.
      Z kolei wiązania wodorowe, które dotychczas postrzegano jako elementy utrzymujące w całości podwójną helisę DNA, wydają się mieć więcej wspólnego z sortowaniem par bazowych, zatem z łączniem się helisy w odpowiedniej kolejności.
      Komórki chcą chronić swoje DNA i nie chcą wystawiać ich na środowisko hydrofobowe, które może zawierać szkodliwe molekuły. Jednocześnie jednak DNA musi się otwierać, by było użyteczne. Sądzimy, że przez większość czasu komórki utrzymują DNA w środowisku wodny, ale gdy chcą coś z DNA zrobić, na przykład je odczytać, skopiować czy naprawić, wystawiają DNA na środowisko hydrofobowe, mówi Bobo Feng, jeden z autorów badań.
      Gdy na przykład dochodzi do reprodukcji, pary bazowe odłączają się i nić DNA się otwiera. Enzymy kopiują obie strony helisy, tworząc nową nić. Gdy dochodzi do naprawy uszkodzonego DNA, uszkodzone części są wystawiane na działanie hydrofobowego środowiska i zastępowane. Środowisko takie tworzone jest przez proteinę będącą katalizatorem zmiany. Zrozumienie tej proteiny może pomóc w opracowaniu wielu leków czy nawet w metodach leczenia nowotworów. U bakterii za naprawę DNA odpowiada proteina RecA. U ludzi z kolei proteina Rad51 naprawia zmutowane DNA, które może prowadzić do rozwoju nowotworu.
      Aby zrozumieć nowotwory, musimy zrozumieć, jak naprawiane jest DNA. Aby z kolei to zrozumieć, musimy zrozumieć samo DNA. Dotychczas go nie rozumieliśmy, gdyż sądziliśmy, że helisa jest utrzymywana przez wiązania atomów wodoru. Teraz wykazaliśmy, że chodzi tutaj o siły hydrofobowe. Wykazaliśmy też, że w środowisku hydrofobowym DNA zachowuje się zupełnie inaczej. To pomoże nam zrozumieć DNA i proces jego naprawy. Nigdy wcześniej nikt nie umieszczał DNA w środowisku hydrofobowym i go tam nie badał, zatem nie jest zaskakujące, że nikt tego wcześniej nie zauważył, dodaje Bobo Feng.
      Szwedzcy uczeni umieścili DNA w hydrofobowym (w znaczeniu bardzo zredukowanej koncentracji wody) roztworze poli(tlenku etylenu) i krok po kroku zmieniali hydrofilowe środowisko DNA w środowisko hydrofobowe. Chcieli w ten sposób sprawdzić, czy istnieje granica, poza którą DNA traci swoją strukturę. Okazało się, że helisa zaczęła się rozwijać na granicy środowiska hydrofilowego i hydrofobowego. Bliższa analiza wykazała, że gdy pary bazowe – wskutek oddziaływania czynników zewnętrznych – oddzielają się od siebie, wnika pomiędzy nie woda. Jako jednak, że wnętrze DNA powinno być suche, obie nici zaczynają przylegać do siebie, wypychając wodę. Problem ten nie istnieje w środowisku hydrofobowym, zatem tam pary bazowe pozostają oddzielone.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Największe z dotychczasowych badań nad genetyką seksualności pozwoliły na zidentyfikowanie pięciu miejsc w genomie, które są powiązane z zachowaniami homoseksualnymi, jednak żadne z tych miejsc nie jest na tyle silnym markerem, by na jego podstawie przewidzieć orientację seksualną człowieka.
      W ostatnim numerze Science ukazały się wyniki badań bazujących na genomach niemal 500 000 osób. Potwierdzają one stwierdzenia tych naukowców, którzy uważają, że o ile genetyka wpływa na orientację seksualną, to żaden pojedynczy gen nie ma na nią znaczącego wpływu. Nie ma 'gejowskiego genu', mówi główny autor badań, Andrea Ganna, genetyk z Broad Institute.
      Naukowcy stwierdzili, że genetyka odpowiada za nie więcej niż 25% zachowań seksualnych, reszta jest ukształtowana przez czynniki środowiskowe i kulturowe. To potwierdzenie wyników uzyskiwanych podczas wcześniejszych badań na mniejszą skalę.
      Autorzy podkreślają jednak, że wyników nie można przekładać wprost na całą populację. Wykorzystane genomy pochodziły bowiem głównie od osób o europejskich korzeniach, a badani byli w wieku 40–70 lat. Ponadto pod uwagę wzięto wyłącznie osoby, których płeć biologiczna i autoidentyfikacja płciowa nie były ze sobą zgodne.
      Naukowcy od dawna sądzili, że orientacja seksualna jest przynajmniej częściowo zapisana w genach. Już w latach 90. wykazano, że bliźnięta jednojajowe z większym prawdopodobieństwem mają tę samą orientację seksualną niż bliźnięta dwujajowe czy rodzeństwo adoptowane. Wyniki niektórych badań sugerowały, że o orientacji seksualnej mężczyzn decyduje region Xq28 w chromosomie X. Jednak inne poddawały tę informację w wątpliwość.
      Dotychczas problemem był fakt, że większość badań prowadzono na mężczyznach i to na małych grupach.
      Tym razem wykorzystano duże bazy danych genetycznych oraz metodę badań asocjacyjnych genomu (GWAS). Naukowcy podzielili badanych na dwie grupy: w pierwszej znalazły się osoby, które przyznały się do kontaktu seksualnego z osobą tej samej płci, w drugiej osoby, które takich kontaktów nie miały. Uczeni skupili się na polimorfizmie pojedynczego nukleotydu (SNP), czyli szukali zmian w sekwencji DNA polegających na zmianie pojedynczego nukleotydu (A, G, T lub C) pomiędzy poszczególnymi osobami. Po analizie i porównaniu genomów stwierdzono, że genetyka może odpowiadać za 8–25 procent zmienności zachowań seksualnych. Podczas kolejnej, jeszcze bardziej szczegółowej analizy, naukowcy próbowali zidentyfikować geny odpowiedzialne za zachowania seksualne. Udało im się znaleźć 5 takich genów, jednak wspólnie pozwoliły one na wyjaśnienie mniej niż 1% zachowań seksualnych.
      Ganna mówi, że wyniki badań sugerują, iż istnieje wiele genów mających wpływ na zachowania seksualne człowieka, a wielu z nich jeszcze nie odkryto. By je znaleźć potrzebne będą badania na jeszcze większej próbce. Uczony mówi jednocześnie, że metoda SNP może być tutaj nieprzydatna, gdyż żaden gen nie ma znaczącego wpływu na ludzkie zachowania seksualne.
      Co prawda udało się odnaleźć pojedyncze SNP powiązane z zachowaniami seksualnymi, jednak nie wiadomo, za co odpowiada każdy z nich. Jeden z tych genów jest powiązany z węchem, a ten, jak wiadomo, odgrywa rolę w atrakcyjności płciowej. Inny z nich jest powiązany z łysieniem u mężczyzn, które – jak wiemy – jest z kolei związane z poziomem hormonów płciowych. Na tej podstawie można wnioskować, że hormony są jakoś powiązane z zachowaniami homoseksualnymi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół z Mayo Clinic nauczył układ immunologiczny myszy zwalczania czerniaka złośliwego. Do spokrewnionego z wirusem wścieklizny wirusa pęcherzykowatego zapalenia jamy ustnej wprowadzono DNA pobrane z ludzkich komórek czerniaka. Dzięki temu szereg genów można było wprowadzić bezpośrednio do guza. Na wczesnym etapie badań w mniej niż 3 miesiące z minimalnymi skutkami ubocznymi wyleczono 60% gryzoni.
      Sądzimy, że ta technika pozwoli nam zidentyfikować całkowicie nowy zestaw genów, które kodują antygeny ważne dla stymulowania układu odpornościowego, tak aby odrzucił on nowotwór. [...] Zauważyliśmy, że by odrzucenie guza było najskuteczniejsze, u myszy kilka białek musi ulegać jednoczesnej ekspresji - tłumaczy dr Richard Vile.
      Wierzę, że uda nam się stworzyć eksperymentalne szczepionki, dzięki którym po kolei wyeliminujemy wszystkie nowotwory. Szczepiąc przeciwko wielu białkom naraz, mamy nadzieję leczyć guzy pierwotne i chronić przed wznową.
      Szczepionki powstające w ramach nurtu immunoterapii nowotworowej bazują na spostrzeżeniu, że guzy przystosowują się do powtarzalnych ataków układu odpornościowego, zmniejszając liczbę antygenów na powierzchni komórek. Przez to układowi odpornościowemu trudniej jest je rozpoznać. O ile jednak nowotwory mogą się nauczyć ukrywać przed zwykłym układem odpornościowym, o tyle nie są w stanie uciec przed układem immunologicznym wytrenowanym przez zmodyfikowany genetycznie wirus pęcherzykowatego zapalenia jamy ustnej.
      Nikt nie wie, ile antygenów układ odpornościowy widzi na powierzchni komórek nowotworowych. Doprowadzając do ekspresji wszystkich białek w wysoce immunogennych wirusach, zwiększamy ich widoczność dla systemu odpornościowego - wyjaśnia dr Vile.
    • By KopalniaWiedzy.pl
      Cztery autonomiczne roboty pobiły rekord świata w pływaniu. Urządzenia przebyły po Oceanie Spokojnym niemal 6000 kilometrów. Docelowo ich podróż będzie miała długość 16 668 km.
      Urządzenia PacX Wave Gliders są dziełem amerykańskiej firmy Liquid Robotics, a ich zadaniem jest dostarczenie informacji na temat składu i jakości wody morskiej. Mają dotrzeć tam, gdzie wcześniej nie wykonywano badań i zebrać informacje na temat kwasowości wody i populacji ryb.
      Roboty rozpoczęły podróż 17 listopada 2011 roku w porcie klubu jachtowego St Francis w San Francisco. Po czterech miesiącach zakończył się pierwszy etap ich podróży - dotarły do Hawajów.
      Każdy robot składa się z dwóch części. Na powierzchni widać coś, co przypomina deskę surfingową. Jest ona połączona kablem z zanurzonymi w wodzie urządzeniami i jednostką napędową. Roboty korzystają z energii słonecznej oraz ruchu fal, które zapewniają im napęd oraz energię dla czujników mierzących co 10 minut zasolenie wody, jej temperaturę, poziom tlenu, warunki pogodowe oraz fluroscencję.
      Po krótkiej przerwie na Hawajach roboty zostaną rozdzielone. Dwa popłyną do Japonii, a dwa do Australii. Ich misja ma zakończyć się na przełomie 2012 i 2013 roku.
×
×
  • Create New...