Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zabójcze wulkany w kredzie

Rekomendowane odpowiedzi

Naukowcy potwierdzili swoją teorię dotyczącą masowego wymierania organizmów morskich w kredzie. Przed 93 milionami lat doszło do olbrzymiej eksplozji wulkanu pod dzisiejszymy Karaibami.

Podczas erupcji do wody przedostały się olbrzymie ilości trujących substancji, które zabiły zwierzęta znajdujące się na dole łańcucha pokarmowego. To z kolei przyczyniło się do wymierania kolejnych gatunków.

Uczeni od dawna podejrzewali, że winnym wymierania był wulkan, jednak brakowało na to dowodów. Znaleźli je kanadyjscy naukowcy z University of Alberta, Steven Turgeon i Robert Creaser. Zbadali oni poziom izotopów osmu w osadach dennych z Ameryki Południowej i z włoskich gór. W obu przypadkach stosunek osmu-187 do osmu-188 gwałtownie zmniejszył się przed samym wymieraniem. Oznacza to, że w tym czasie do oceanów przedostała się olbrzymia ilość stopionej magmy, która jest bogata w cięższy z izotopów. Ilość wyrzuconej magmy odpowiada wzrostowi wulkanizmu o 30-50 razy. W tamtym czasie jedynie w okolicy dzisiejszych Karaibów znajdowało się na tyle dużo wulkanów, by wyrzucić tyle magmy.

Geolog morski Tim Bralower z Pennsylvania State University przyznaje, że jego kanadyjscy koledzy znaleźli dowód na erupcję. Zauważa jednak, że nie wyjaśnili, co naprawdę spowodowało wymieranie. Jedna z teorii mówi bowiem, że sama erupcja nie zabiła zwierząt, wręcz przeciwnie - do wody przedostały się substancje odżywcze, które spowodowały masowy wzrost roślin i zwierząt. Było ich tak dużo, że pozbawiły oceany tlenu i podusiły się.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W myśl ostatnio lansowanej teorii warto byłoby poszukać na antypodach owego wulkanu jakiegoś krateru meteorytowego, ale dużego...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Niejednokrotnie słyszeliśmy o zagrożeniach związanych z roztapianiem się lądolodów na biegunach. Takie zjawiska jak podnoszenie się poziomu oceanów czy zmiany zasolenia ich wód istnieją w świadomości opinii publicznej. Jednak, jak się dowiadujemy, zmniejszanie się grubości pokryw lodowych może mieć też wpływ na... wulkanizm.
      Warstwy lodu o grubości tysięcy metrów wywierają olbrzymi nacisk na leżące pod nimi skały. Gdy lód topnieje, nacisk się zmniejsza, co powoduje unoszenie się skał. To zaś zmniejsza ciśnienie wewnątrz komór magmowych leżących pod skorupą ziemską.
      Allie N. Coonin z Brown University postanowiła zbadać wraz z kolegami wpływ ruchów izostatycznych spowodowanych topnieniem się lodu Antarktydy na Ryft Zachodnioantarktyczny. To jeden z największych ryftów – rowów tektonicznych – na Ziemi. Naukowcy przyjrzeli się związkom zlodowacenia oraz wulkanizmu w czasie dwóch ostatnich zlodowaceń. Na potrzeby badań uczeni wykorzystali model komory magmowej i symulowali zmniejszanie się lądolodu Antarktydy Zachodniej, zmniejszając wirtualnie ciśnienie wywierane na leżące poniżej lodu skały i komorę magmową. Badali, jak zmniejszenie ciśnienia prowadziło do powiększenia się komory. W takim przypadku ciśnienie otaczających komorę skał staje się mniejsze niż ciśnienie gazu w magmie. Tworzą się pęcherzyki, które wypychają magmę i dochodzi do erupcji.
      Symulując komory magmowe o różnej wielkości naukowcy zauważyli, że im większa komora, tym bardziej reaguje ona na skutki zmniejszania się pokrywy lodowej. Krytycznym czynnikiem jest tutaj tempo utraty lodu. Uczeni symulowali to zjawisko do maksymalnej prędkości utraty 3 metrów lodu na rok.
      Chcąc zweryfikować wyniki uzyskane w trakcie symulacji, naukowcy przyjrzeli się wulkanom andyjskim z Southern Volcanic Zone w Patagonii. Pomiędzy 35 a 18 tysięcy lat temu narosło tam 1600 metrów lodu. W okresie interglacjału lód ten zaczął topnieć. Doszło wówczas do zwiększonej aktywności wulkanów Calbuco, Mocho-Choshuenco i Puyehue-Coron Caulle.
      Zwiększenie wulkanizmu spowodowane roztapianiem lądolodu może uruchomić sprzężenie zwrotne, gdy roztapiający się lód będzie prowadził do zmniejszenia ciśnienia w komorze magmowej i erupcji, która z kolei roztopi więcej lodu, co wywoła kolejną erupcję. Nawet gdyby antropogeniczne ocieplenie natychmiast się zatrzymało, to zmniejszenie grubości pokrywy lodowej, jakiej już doświadczył Ryft Zachodnioantarktycznego, będzie wpływało na tamtejsze wulkany przez setki lub tysiące lat, stwierdzają autorzy badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 1831 roku wielka erupcja wulkaniczna doprowadziła do globalnego spadku temperatur, zmniejszenia plonów i głodu. Felix Mendelssohn, który latem podróżował przez Alpy, pisał, że jest zimno jak w zimie, a na najbliższych wzgórzach leży głęboki śnieg. Erupcja z 1831 roku pozostawała najbardziej tajemniczą z niedawnych erupcji wulkanicznych. Wiadomo, że zaburzenia pogodowe, spadek temperatury i głód spowodował wulkan. Nie było jednak wiadomo, który. Do teraz.
      Międzynarodowy zespół naukowy, na którego czele stał doktor William Hutchinson ze szkockiego University of St. Andrews poinformował o uzyskaniu idealnego dopasowania pomiędzy popiołem z 1831 roku uzyskanym z rdzenia lodowego, a popiołem z wulkanu. Dopiero od niedawna pojawiła się możliwość pozyskania mikroskopowych fragmentów popiołu z polarnych rdzeni lodowych i wykonania szczegółowych analiz chemicznych. Te fragmenty są niezwykle małe, ich średnica nie przekracza 1/10 średnicy ludzkiego włosa, mówi Hutchinson. Uczony wraz z zespołem dokładnie datował popiół i jednoznacznie powiązał go z Wulkanem Zawaryckiego na wyspie Simuszir, która stanowi część Kuryli. Erupcja utworzyła kalderę wulkaniczną o szerokości 3 kilometrów.
      Analizy wykazały, że do erupcji wulkanu doszło na przełomie wiosny i lata 1831 roku. Uzyskane z rdzeni lodowych fragmenty popiołu porównano z próbkami okolicznych wulkanów, które wiele dekad wcześniej trafiły na uniwersytet. Moment, w którym badaliśmy jednocześnie próbki z rdzenia i z tego właśnie wulkanu, był niezwykły. Nie mogłem uwierzyć, że dane są identyczne. Później spędziłem wiele czasu zbierając i analizując informacje o erupcjach na Kurylach i ich zasięgu, by upewnić się, że powiązanie było prawidłowe, ekscytuje się Hutchinson. Uczony przypomina, że na Ziemi istnieje wiele słabo zbadanych wulkanów położonych w odległych regionach globu, co pokazuje, jak trudno będzie przewidzieć, gdzie i kiedy dojdzie do kolejnej wielkiej erupcji.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Obserwujący niebo średniowieczni mnisi wnieśli udział do współczesnej wulkanologii. Międzynarodowy zespół badawczy, pracujący pod kierunkiem uczonych z Uniwersytetu w Genewie, przeanalizował średniowieczne kroniki, rdzenie lodowe i pierścienie drzew, co pozwoliło na precyzyjne datowanie jednych z największych erupcji wulkanicznych w historii ludzkości. W ten sposób uzyskali nowe informacje dotyczące jednego z najbardziej aktywnych wulkanicznie okresów na Ziemi.
      Naukowcy ze Szwajcarii, Francji, USA, Kanady, Wielkiej Brytanii i Irlandii przez pięć lat analizowali setki kronik i annałów pochodzących z Europy i Bliskiego Wschodu. Wielkie erupcje wulkaniczne wyrzucają do atmosfery duże ilości związków siarki, które zaburzają budżet energetyczny Ziemi, powodując sezonowe i regionalne zmiany temperatury oraz opadów. Zmiany takie, w połączeniu z czynnikami społecznymi wiążą się z historycznymi deficytami w produkcji wolnej, niepokojami społecznymi i politycznymi, epidemiami i migracjami.
      Podstawowym narzędziem datowania wybuchów wulkanów są dowody geologiczne. Dzięki nim wiemy, że w XII-XIII wieku doszło do wzmożonego wulkanizmu zapoczątkowanego przez szereg erupcji z lat ok. 1108–1110, a w 1257 roku miał miejsce wybuch wulkanu Salamas, jedno z największych tego typu wydarzeń epoki holocenu. Jednak geologiczne datowanie erupcji nie jest łatwe i niesie ze sobą wiele wyzwań.
      Naukowcy z Genewy i ich koledzy postanowili skorzystać z faktu, że wielkie erupcje mogą prowadzić do widocznych zmian w atmosferze. Rozpoczęli więc poszukiwanie w kronikach opisów takich zmian.
      Obecność aerozoli w atmosferze ma bardzo duży wpływ na jasność Księżyca podczas zaćmienia. Im więcej aerozoli, tym ciemniejszy wydaje się wówczas Księżyc. Naukowcy przejrzeli imponującą liczbę źródeł, poszukując tych, których kontekst historyczny był znany, a w których opisano całkowite zaćmienia Księżyca wraz z informacjami o kolorze ziemskiego satelity.
      W Europie głównymi źródłami na temat takich wydarzeń są annały i kroniki tworzone w klasztorach i miastach. W źródłach arabskich informacje znajdziemy najczęściej w kronikach uniwersalnych, w Chinach i Korei ich odnotowywaniem zajmowali się oficjalni astronomowie, a w Japonii obserwacje zaćmień rejestrowano w licznych źródłach, jak dzienniki dworzan, kroniki czy zapiski świątynne.
      Z badań astronomicznych wiemy, że pomiędzy 1100 a 1300 rokiem – o ile pogoda pozwoliła – ludzie w Europie mogli obserwować 64 całkowite zaćmienia Księżyca, mieszkańcy Bliskiego Wschodu mogli widzieć ich 59, a mieszkańcy Azji Wschodniej – 64. Badacze znaleźli 180 europejskich źródeł z opisami 51 z tych zaćmień, 10 bliskowschodnich z opisami 7 zaćmień, oraz 199 wschodnioazjatyckich, w których opisano 61 zaćmień. Liczba doniesień na temat zaćmień jest bardzo różna. Na przykład na terenie Europy 12 zaćmień opisano tylko w jednym źródle, ale np. zaćmienie z 11 lutego 1161 roku zostało opisane w aż 16 zachowanych do dzisiaj źródłach.
      Chrześcijańskie źródła europejskie przynoszą informacje o kolorze i jasności Księżyca podczas 36 zaćmień. Danych takich brakuje w źródłach azjatyckich, z których tylko jedno opisuje kolor. Kronikarze chrześcijańscy interesowali się kolorem ziemskiego satelity prawdopodobnie pod wpływem Apokalipsy św. Jana, gdzie znajdziemy wzmiankę o księżycu w kolorze krwi (Ap 6:12). Biblia miała więc wpływ na obserwacje zjawisk naturalnych, co jednak nie znaczy, że ówczesna europejska nauka nie znała ich fizycznych przyczyn. Wręcz przeciwnie, ze średniowiecznych traktatów astronomicznych wiemy, że wiedza babilońskich czy greckich astronomów była w Europie dostępna. Jednocześnie zatem istniała interpretacja naturalna i nadprzyrodzona zaćmień.
      Po przeprowadzeniu analizy naukowcy stwierdzili, że wśród 64 całkowitych zaćmień opisanych przez europejskich kronikarzy, w przypadku 37 z nich mamy informacje o jasności i kolorze. Uczeni uszeregowali je na skali Danjona, wedle której wartość L=0 oznacza bardzo ciemne zaćmienie, gdy Księżyc jest niemal niewidoczny, a L=4 to bardzo jasne zaćmienie, z Księżycem w kolorze miedzianoczerwonym lub pomarańczowym. Tylko sześć wydarzeń zostało zakwalifikowanych jako L=0. Były to zaćmienia z nocy z 5/6 maja 1110, 12/13 stycznia 1172, 2/3 grudnia 1229, 18/19 maja 1258, 12/13 listopada 1258 oraz 22/23 listopada 1276. Wyjątkowe świadectwo znaleziono też w źródle japońskim. Mimo że azjatyckie źródła rzadko wspominają o kolorze, to jednak autor Meigetsuki, Fujiwara no Teika, odnotował wyjątkowo ciemny Księżyc podczas zaćmienia 2 grudnia 1229 roku. Wspomina, że Księżyc całkowicie zniknął na długi czas, nikt z żyjących nie pamiętał takiego wydarzenia, a astronomowie mówili o nim z obawą.
      Wszystkie wspomniane zaćmienia L=0 są zbieżne z 5 z 7 największych erupcji wulkanicznych, o których wiemy z rdzeni lodowych. Mowa tutaj o erupcjach UE1 (rok 1108 według danych geologicznych), UE2 (1171), UE4 (1230), Salamas (1257) oraz UE5 (1276). To bardzo silna wskazówka, że za taki a nie inny kolor i jasność ziemskiego satelity odpowiadało zanieczyszczenie atmosfery przez wulkany.
      Dzięki połączeniu danych z rdzeni lodowych, pierścieni drzew, obserwacji całkowitych zaćmień Księżyca oraz modelowania transportu aerozoli w atmosferze, naukowcy stwierdzili, że do wielkiej erupcji wulkanicznej dochodziło na 3 do 20 miesięcy przed obserwacjami całkowitego zaćmienia L=0. I tak na przykład można stwierdzić, że data erupcji UE2, która według datowania geologicznego nastąpiła prawdopodobnie w 1171 roku, została uściślona – dzięki średniowiecznym kronikom i badaniom pierścieni drzew – na maj/sierpień 1171. Podobnie uściślono inne daty. UE1 miała miejsce zimą na przełomie lat 1108/1109, UE4 nastąpiła wiosną/latem 1229, a erupcja Salamas to wiosna lub lato 1257 roku, co pozwala odrzucić proponowaną alternatywną datę 1256. W przypadku UE5 datę udało się ustalić jedynie na okres między wrześniem 1275 a lipcem 1276, a dalsze uściślenie było niemożliwe, gdyż w pierścieniach drzew brak oczywistego sygnału ochłodzenia.
      Wielkie erupcje wulkaniczne prowadziły do przejściowego ochłodzenia, które mogło trwać dłużej niż rok. Takie wydarzenia odbijały się niekorzystnie na zbiorach, powodując niedobory żywności czy klęski głodu. Jednak ludzie nie łączyli wulkanów ze słabymi zbiorami. W starych dokumentach rzadko wspomina się erupcje wulkaniczne. A były to wydarzenia o olbrzymim znaczeniu. Erupcja Salamas była równie potężna, co słynny wybuch wulkanu Tambora z 1815 roku. Rok 1816 okrzyknięto rokiem bez lata. Nic dziwnego, gdyż średnie globalne temperatury na półkuli północnej spadły wówczas o 0,53 stopnia Celsjusza i szacuje się, że spowodowało to śmierć około 90 000 ludzi. Salamas wybuchł 550 lat wcześniej, gdy ludzkość była znacznie bardziej wrażliwa na takie wydarzenia, a z obecnie dostępnych danych wynika, że anomalia temperaturowa po jego erupcji wyniosła nie -0,5, ale -2 stopnie Celsjusza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Popiół wulkaniczny może mieć większy wpływ na klimat niż dotychczas sądzono. Do takich wniosków doszli naukowcy z University of Colorado Boulder, którzy badali skutki erupcji wulkanu Mount Kelut na Jawie, który wybuchł w 2014 roku. Na podstawie obserwacji oraz symulacji komputerowych uczeni stwierdzili, że popiół może pozostawać w atmosferze przez wiele miesięcy po erupcji.
      Odkrycia dokonano przypadkiem. Uczeni pilotowali drona w pobliżu Mount Kelut. Badania prowadzili po erupcji, która zmusiła tysiące ludzi do ewakuacji.
      Zauważyli duże kawałki unoszące się w powietrzu miesiąc po erupcji. Wyglądało to jak popiół, mówi główna autorka najnowszych badań, Yunqian Zhu z Laboratory for Atmospheric and Space Physics na CU Boulder.
      Naukowcy od dawna wiedzą, że erupcje wulkaniczne, które wyrzucają w powietrze olbrzymie ilości siarki blokującej dostęp promieni słonecznych do Ziemi, przyczyniają się do schładzania planety. Nie sądzili jednak, że i popiół odgrywa w tym procesie dużą rolę. Uważano bowiem, że jest on na tyle ciężki, iż szybko opada.
      Zhu i jej zespół chcieli dowiedzieć się, dlaczego popiół był obecny w powietrzu jeszcze miesiąc po erupcji. Okazało się, że składa się on z małych lekkich fragmentów, które z łatwością unoszą się w powietrzu. Dotychczas sadzono, że popiół jest podobny do szkła wulkanicznego. Tymczasem odkryliśmy, że to, co unosiło się w powietrzu ma gęstość bardziej zbliżoną do pumeksu, stwierdza uczona.
      Wydaje się też, jak mówi profesor Brian Toon, że te podobne do pumeksu cząstki zmieniają chemię całego pióropusza dymu i popiołu nad wulkanem. Wiemy, że wulkany wyrzucają duże ilości dwutlenku siarki. Wielu naukowców sądziło, że różne składniki dymu wulkanicznego wchodzą ze sobą w interakcje i w serii reakcji chemicznych powstaje kwas siarkowy. Jego formowanie się w powietrzu może trwać przez wiele tygodni. Jednak obserwacje wskazywały, że reakcje zachodzą szybciej. Nie potrafiono wyjaśnić tego fenomenu.
      Toon sądzi, że znalezione cząstki popiołu mogą rzucić nieco światła na tę kwestię. Wydaje się molekuły dwutlenku siarki przyczepiają się do popiołu, który długo krąży w powietrzu. Reakcje mogą zachodzić na powierzchni cząstek popiołu, na których może się gromadzić nawet 43% siarki z erupcji. Innymi słowy, popiół może znacząco przyspieszać reakcje, w wyniku których powstaje kwas siarkowy.
      Nie jest jasne, na ile ten krążący w atmosferze popiół wpływa na klimat. Teoretycznie długo utrzymujące się w powietrzu cząstki powinny schładzać powierzchnię planety. Mogą też trafiać na bieguny gdzie mogą przyczyniać się do powstawania reakcji niszczących warstwę ozonową. Tak czy inaczej, wszystko wskazuje na to, że należy lepiej przyjrzeć się temu, co dzieje się w popiołem w atmosferze po erupcji wulkanu. Myślę, że odkryliśmy coś ważnego. Takiego popiołu jest niewiele, ale może on robić sporą różnicę, mówi Toon.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od 1993 roku działania naukowców i ekologów zapobiegły wymarciu co najmniej 28 gatunków ssaków i ptaków, uważają uczeni z Newcastle University i BirdLife International. Wyniki badań międzynarodowego zespołu naukowego zostały opublikowane w piśmie Conservation Letters. Ich autorzy oceniali, ile gatunków ssaków i ptaków by wyginęło, gdyby nie podjęto działań ochronnych.
      Gatunkami, które zostały w ten sposób uratowane są m.in. portorykańska endemiczna papuga amazonka niebieskoskrzydła, koń Przewalskiego, żyjący w Brazylii ptak mrówiaczek ciemnoskrzydły, ryś iberyjski czy zamieszkujący Nową Zelandię ptak szczudłak czarny. Fakt, że gatunki te wciąż istnieją, zawdzięczamy intensywnym działaniom mającym na celu ich ochronę. Jednak los tych gatunków jest wciąż niepewny. Większość z nich jest krytycznie zagrożonych. Szacuje się na przykład, że żyje mniej niż 30 osobników mrówiaczka ciemoskrzydłego, dla którego głównym zagrożeniem jest wycinka lasów deszczowych.
      Badania wykazały, że gdyby nie działania na rzecz ochrony, to od roku 1993 wyginęłoby od 21 do 32 gatunków ptaków i od 7 do 16 gatunków ssaków. Naukowcy określili też, jakie działania przyniosły największy skutek. Okazuje się, że w przypadku 21 gatunków ptaków ważne było zwalczanie gatunków inwazyjnych, w przypadku 20 gatunków istotną rolę odegrała hodowla w niewoli, a w przypadku 19 – ochrona habitatów. Jeśli zaś chodzi o ssaki to 14 gatunków przetrwało dzięki wprowadzeniu odpowiednich przepisów, a 9 dzięki reintrodukcji i hodowli w niewoli.
      Zespół naukowy, na którego czele stali doktor Rike Bolem i profesor Phil McGowen z Newcastle University oraz doktor Suart Butchard z BirdLife International posłużył się danymi przekazanymi przez 137 ekspertów zajmujących się populacjami dzikich zwierząt, zagrożeniami i trendami w tych populacjach. Na podstawie dostarczonych danych oszacowano prawdopodobieństwo, z jakim bez działań ochronnych dany gatunek by wyginął.
      Jednym z takich ocalonych gatunków jest amazonka niebieskoskrzydła z Portoryko. Liczebność tego niegdyś powszechnie występującego gatunku spadła w 1975 roku do 13 osobników żyjących na wolności. Od 2006 roku podejmowane są wysiłki w celu reintrodukcji gatunku w Rio Abajo State Park. W 2017 roku huragany zabiły całą oryginalną populację, pozostawiając przy życiu tylko populację reintrodukowaną. Bez reintrodukcji amazonka niebieskoskrzydła wyginęłaby na wolności.
      Inna jest historia konia Przewalskiego. Gatunek ten wyginął na wolności w latach 60. ubiegłego wieku. W latach 90. podjęto wysiłki na rzecz reintrodukcji, a w 1996 roku urodził się pierwszy koń Przewalskiego na wolności. Obecnie dzika populacja tego gatunku liczy ponad 760 osobników.
      Nie zawsze jednak informacje są tak optymistyczne. Bardzo szybko spada populacja krytycznie zagrożonego morświna kalifornijskiego, a ekologom i naukowcom udało się jedynie spowolnić ten spadek. Bez wzmożenia wysiłków oraz woli politycznej decydentów gatunek może wkrótce wyginąć.
      To niezwykle pocieszające, że niektóre badane przez nas gatunki odradzają się. To pokazuje, że wysiłki na rzecz ratowania bioróżnorodności przynoszą efekt. Widzimy, że możliwe jest zapobieżenie wymieraniu gatunków, mówi Bolam. Profesor McGowan przypomina jednak, że w tym samym czasie wyginęło lub prawdopodobnie wyginęło aż 15 gatunków ptaków i ssaków.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...