Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Superkomputer wykryje osteoporozę

Rekomendowane odpowiedzi

Badacze z Federalnego Instytutu Technologii w szwajcarskim Zurichu opracowali nową metodę precyzyjnej analizy wytrzymałości tkanki kostnej. Technika, opierająca się na pomiarach gęstości oraz parametrów mechanicznych próbki, ma szansę stać się za kilka lat istotnym elementem diagnostyki osteoporozy.

 

Opracowana procedura działa w oparciu o złożone symulacje generowane przez superkomputer Blue Gene/L firmy IBM, której pracownicy wsparli pracownikow Instytutu. Na podstawie analizy reakcji fragmentu kości na nacisk tworzona jest "mapa" naprężeń powstających w całej objętości próbki. Uzyskane wyniki pozwolą w przyszłości na dobór optymalnego sposobu leczenia osteoporozy, pomogą także w podjęciu decyzji o ewentualnym wszczepieniu metalowych płytek wzmacniających kość w miejscach najbardziej narażonych na pęknięcia. 

 

Aby przeprowadzić badanie, wystarcza pobranie próbki kości o wymiarach 5x5 mm. Materiał jest następnie poddawany różnorodnym próbom obciążeniowym, a zebrane z czujników informacje trafiają do komputera. Efektem pojedynczego testu, trwającego około dwudziestu minut, jest wytworzenie około... 90 GB danych. Oczywiście, są one następnie obrabiane do bardziej "przystępnej" formy, pozwalającej na interpretację przez lekarza.

 

Pozornie największą wadą metody jest konieczność użycia komputera klasy Blue Gene/L. Ilość przeprowadzanych obliczeń jest tak wielka, że nawet słynny komputer Deep Blue, znany z pojedynków szachowych z Garri Kasparowem pod koniec XX wieku, potrzebowałby na ich wykonanie niemal tygodnia. Na szczęście, porównanie to pokazuje jednocześnie, jak szybki jest rozwój informatyki. Jak ocenia dr Alessandro Curioni, pracujący dla laboratorium badawczego IBM w Zurichu, za dziesięć lat możliwości dzisiejszych komputerów będą osiągalne przy użyciu zwykłych komputerów biurkowych, dzięki czemu tego typu symulacje wytrzymałości tkanki kostnej staną się rutynową praktyką.

 

Pracujący w Federalnym Instytucie Technologii prof. Peter Arbenz, pomysłodawca nawiązania współpracy z Błękitnym Gigantem, tłumaczy, że najważniejszym wyzwaniem dla jego zespołu było stworzenie nowoczesnych i wydajnych algorytmów zdolnych do przepowadzenia tak złożonych symulacji. Choć dotychczasowe wyniki wydają się być bardzo obiecujące, badacz ocenia to osiągnięcie ostrożnie: Jesteśmy na początku ekscytującej podróży. Ten kierunek badań musi być utrzymany, byśmy mogli osiągnąć nasz cel. Kolejnym celem grupy będzie stworzenie algorytmu zdolnego do symulacji złamania kości u ściśle określonej osoby poddawanej badaniu. Osiągnięcie tego celu pomogłoby bez wątpienia w szybkiej i skutecznej diagnostyce osteoporozy oraz ocenie zagrożeń związanych z osłabieniem kości. Stawka jest niezwykle wysoka, gdyż chorobą jest zagrożonych aż 9 milionów osób w samej tylko Polsce.

 

Wyniki badań zaprezentowano na konferencji IACM/ECCOMAS 2008 w Wenecji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dyrektor wykonawczy IBM-a Arvind Krishna poinformował, że jego firma przestanie rekrutować ludzi na stanowiska, na których w najbliższych latach mogą być oni zastąpieni przez sztuczną inteligencję. W wywiadzie dla Bloomberga menedżer stwierdził, że rekrutacja na stanowiska biurowe, na przykład w dziale HR, może zostać znacznie spowolniona lub całkowicie wstrzymana. Obecnie na tego typu stanowiskach – gdzie nie ma kontaktu z klientem – IBM zatrudnia 26 000 osób.
      Zdaniem Krishny, w ciągu najbliższych 5 lat sztuczna inteligencja może zastąpić 30% z nich. To oznacza, że w samym tylko IBM-ie maszyny zastąpią 7800 osób. Stąd też pomysł na spowolnienie lub wstrzymanie rekrutacji, dzięki czemu uniknie się zwalniania ludzi.
      Krishna mówi, że takie zadania, jak pisanie listów referencyjnych czy przesuwanie pracowników pomiędzy poszczególnymi wydziałami, prawdopodobnie zostaną całkowicie zautomatyzowane. Inne zaś, takie jak analizy produktywności czy struktury zatrudnienia, ludzie będą wykonywali jeszcze przez kolejną dekadę.
      Błękitny Gigant zatrudnia obecnie około 260 000 osób i wciąż zwiększa zatrudnienie. Potrzebuje pracowników przede wszystkim do rozwoju oprogramowania oraz osób pracujących z klientem. Na początku bieżącego roku firma ogłosiła, że planuje zwolnienia, które w sumie obejmą 5000 osób, ale jednocześnie w I kwartale zatrudniła 7000 osób.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Uniwersytecie Jagiellońskim powstał materiał, który może pomóc w dobudowaniu ubytków kostnych oraz służyć jako nośnik leków na osteoporozę. Jest on dziełem naukowców z Wydziału Chemii kierowanych przez profesor Marię Nowakowską. Nowy materiał ma postać hydrożelu, który wstrzykuje się w miejscu ubytku. Następnie dochodzi do jego zestalenia w temperaturze 37 stopni Celsjusza. Hydrożel trwale przyczepia się do tkanki kostnej i pełni rolę rusztowania, na którym w naturalny sposób tworzy się nowa tkanka wypełniająca ubytek.
      Hydrożel ma też dodatkową zaletę – może posłużyć jako nośnik podawanych miejscowo leków na osteoporozę. To zaś pozwala na uniknięcie ogólnoustrojowego podawania leków niosących ze sobą skutki uboczne oraz dalej możliwość aplikowania znacznie większych stężeń w bezpośrednie sąsiedztwo chorych tkanek.
      Komponenty naszego hydrożelu naśladują naturalny skład tkanki kostnej. Wśród jego składników jest między innymi kolagen, kwas hialuronowy oraz chitozan, czyli polisacharyd o udowodnionych właściwościach antybakteryjnych, przeciwzapalnych i przeciwbólowych. Oprócz tego w jego skład wchodzi kluczowy składnik nieorganiczny. Jest nim syntetyzowany przez nas układ cząstek krzemionki dekorowanych hydroksyapatytem, który w hydrożelu i projektowanej terapii pełni kilka istotnych i pożytecznych funkcji. Składowe hydrożelu, po jego wstrzyknięciu, już w organizmie, wiążą się ze sobą wiązaniami kowalencyjnymi. Właściwość ta pozwala podać hydrożel nieinwazyjną drogą a cały materiał zachowuje swoją funkcjonalność, ponieważ nie ulega niekontrolowanej degradacji, opisuje działanie hydrożelu doktor Joanna Lewandowska-Łańcucka.
      Naukowcy z UJ przeprowadzili już wstępne badania na modelu mysim. Wykazały one, że hydrożel nie jest toksyczny. Naukowcy zauważyli też, że miejscu wstrzyknięcia powstają włosowate naczynia krwionośne, co stanowi podstawę do obudowania się tkanki kostnej. Hydrożel ulega stopniowej powolnej degradacji. Po 60 dniach od podania wciąż były widoczne jego resztki. Z kolei podczas badań in vitro stwierdzono, że podany w hydrożelu lek jest uwalniany stopniowo, co może zwiększyć skuteczność terapii.
      Pierwsze testy hydrożelu na liniach komórkowych i modelach zwierzęcych wypadły bardzo obiecująco. Na razie planujemy przeznaczyć ten materiał do projektowania terapii mniejszych ubytków kostnych, spowodowanych przede wszystkim osteoporozą, ale również różnego rodzaju urazami czy ubytków, jakie powstają na przykład w wyniku operacji neurologicznych. Materiał
      powinien więc zainteresować szerokie grono lekarzy reumatologów, ortopedów, jak również neurologów i stomatologów, dodaje doktor Gabriela Konopka-Cupiał, dyrektor CITTRU – Centrum Transferu Technologii UJ.
      Teraz naukowcy poszukują inwestorów, którzy wezmą udział w rozwoju wynalazku oraz zaangażują się w badania kliniczne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jednym z najczęstszych nowotworów złośliwych u kobiet jest rak piersi. Alarmujący jest wzrost zachorowalności na ten nowotwór, jednak z roku na rok umieralność z jego powodu się obniża. Należy zwrócić uwagę na poprawę wyników leczenia raka piersi w Polsce, jak również na świecie. Najprawdopodobniej jest to spowodowane coraz częstszym wykrywaniem tego nowotworu we wczesnym stadium oraz wprowadzania bardziej efektywnych metod leczenia. Dlatego tak ważne jest regularne badanie się kobiet w tym kierunku - samobadanie, usg piersi, mammografia. Ustanowienie października “Miesiącem Świadomości Raka Piersi” ma na celu szerzenie wiedzy o raku piersi. W tym czasie zaplanowano wiele akcji oraz programów profilaktycznych związanych z profilaktyką i nauczeniem społeczeństwa czujności onkologicznej np. Marsz Różowej Wstążki ulicami Szczecina, VI Konferencja Rak Piersi – Onkologia i Plastyka w Poznaniu.
      Czynniki ryzyka rozwoju raka piersi są złożone. W ciągu ostatnich kilkudziesięciu lat przeprowadzono liczne badania epidemiologiczne pomogły ustalić główne przyczyny wzrostu lub progresji tego nowotworu. Do czynników ryzyka zwiększających ryzyko rozwoju raka piersi należą m.in.:
      płeć żeńska, wiek (obserwuje się wzrost zachorowalności u kobiet powyżej 50 r.ż.), mała aktywność fizyczna, wysokie BMI, rodzinne obciążenia (szczególnie występowanie raka piersi w młodym wieku),
      obecność mutacji niektórych genów (głównie BRCA1 i BRCA2), element hormonalny (wczesna pierwsza miesiączka, menopauza w późnym wieku, wieloletnia hormonalna terapia zastępcza). Rak piersi często nie daje żadnych objawów poza guzem. Jeśli się już pojawiają to są one współistniejące np. zmiana wielkości/kształtu piersi, wyciek z brodawki, zaczerwienienie piersi (tzw. “objaw skórki pomarańczy”), powiększenie węzłów chłonnych w dole pachowym. Zaobserwowanie jakiegokolwiek objawu sugerującego raka jest wskazaniem do wykonania dalszej diagnostyki, która obejmuje USG (u kobiet poniżej 40 r.ż.), mammografię (pozwala ocenić całą pierś wraz z brodawką, tkanką podsutkową i mięśniem piersiowym większym), MRI piersi (wykonywana u osób wymagających testów wysokiej czułości np. u osób z mutacją genu BRCA1 i BRCA2, służy również do oceny skuteczności leczenia chemioterapią przedoperacyjną oraz w poszukiwaniu pierwotnego ogniska przy obecnych przerzutach). Należy jednak pamiętać, że “złotym standardem” w rozpoznawaniu raka piersi jest badanie patomorfologiczne/histopatologiczne materiału pobranego podczas biopsji.

      Następnym krokiem po postawieniu diagnozy jest ustalenie stopnia zaawansowania raka za pomocą klasyfikacji TNM (T-guz, N-węzły chłonne, M-przerzuty odległe). Pomaga to w doborze odpowiedniej strategii leczenia, która jest również zależna od wielu czynników rokowniczych i predykcyjnych. Najważniejsze z nich to: stopień zaawansowania klinicznego, typ histologiczny, podtyp biologiczny, wyniki badań molekularnych i obecność przerzutów. Jednak nadal podstawowym sposobem leczenia pozostaje postępowanie chirurgiczne, a dopiero po jego zakończeniu możliwe jest zastosowanie leczenia uzupełniającego np. radioterapii.

      Rak piersi należy do nowotworów hormonozależnych, dlatego ważne w diagnostyce tego nowotworu jest oznaczanie zawartości receptorów estrogenowych (ER) i receptorów progesteronowych (PR) w komórkach nowotworowych. Estrogeny pobudzają rozrastanie się guza, natomiast zablokowanie lub obniżenie ilości receptorów ER powoduje obniżenie proliferacji rakowo zmienionych komórek. Chorzy, którzy wykazują duże stężenie i/lub ekspresję obu receptorów, cechują się największym prawdopodobieństwem skuteczności terapii hormonalnej, a więc dużym poziomem remisji.

      W diagnostyce laboratoryjnej chorych na raka piersi wykorzystuje się oznaczenia:
      antygenu karcynoembrionalnego (CEA). Podwyższone stężenie tego markera występuje głównie w zaawansowanych stadiach choroby, jest również niekorzystnym czynnikiem prognostycznym. Po prawidłowo przeprowadzonym leczeniu operacyjnym stężenie CEA ulega obniżeniu, aż do zaniku w krążeniu chorego. antygenu 15-3. Ten marker jest silnie skorelowany z stadium raka piersi oraz z odpowiedzią na przeprowadzane leczenie. TPA,TPS, CYFRA 21-1. Są to pochodne cytokreatyn. Mają zastosowanie w monitorowaniu leczenia oraz kontroli po jego ukończeniu. receptorów typu 2 dla naskórkowego czynnika wzrostu (HER2). Uważa się, że wzrost ich ekspresji jest skorelowany z zwiększonym ryzykiem rozwoju przerzutów. Aby zmniejszyć to ryzyko podaje się chorym na raka piersi trastuzumab (herceptyna). białka p105, które jest zewnątrzkomórkową domeną receptora HER2. Wykorzystuje się go do monitorowania leczenia trastuzumabem, oraz do rokowania odpowiedzi na leczenie hormonalne. Rak piersi nie jest jednolitą chorobą, jest za to jednym z najczęstszych nowotworów złośliwych kobiet. Wywiera on bardzo silny wpływ na psychikę i życię ludzi. Dlatego bardzo duże znaczenie ma uświadamianie ludzi o raku piersi, regularne wykonywanie samobadania i badań przesiewowych, aby zmniejszyć  umieralność, aby “droga przez chorobę była drogą do zdrowienia”.

      Bibliografia:

      1. Solnica B. (red.) Diagnostyka Laboratoryjna. PZWL Wydawnictwo Lekarskie, Warszawa 2019
      2. Jassem J, Krzakowski M, Bobek-Billewicz B et al. Breast cancer. Oncol Clin Pract 2018.
      3. Wild CP, Weiderpass E, Stewart BW, redaktorzy (2020). World Cancer Report: Cancer Research for Cancer Prevention. Lyon, Francja: Międzynarodowa Agencja Badań nad Rakiem.
      4. Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, Zaguia A, Koundal S, Belay A.. Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures. Biomed Res Int. 2022 Apr 18;2022:9605439.
      5. Ginsburg O, Yip CH, Brooks A, Cabanes A, Caleffi M, Dunstan Yataco JA, et al. Wczesne wykrywanie raka piersi: podejście etapowe do wdrożenia. Rak 2020
      5. Ulotki informacyjne: Rak piersi - od diagnozy do leczenia. Federacja Stowarzyszeń “Amazonki”

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Prace międzynarodowej grupy badawczej, na czele której stali specjaliści ze Skołkowskiego Instytutu Nauki i Technologii (Skoltech) w Moskwie oraz IBM-a zaowocowały powstaniem energooszczędnego superszybkiego przełącznika optycznego. Urządzenie nie wymaga chłodzenia, a jednocześnie jest ponad 100-krotnie szybsze od najszybszych współczesnych tranzystorów.
      Tym, co czyni to urządzenie tak bardzo energooszczędnym jest fakt, że do przełączenia stanu potrzebuje zaledwie kilku fotonów, mówi główny autor badań Anton Zasiedatieliew. W laboratorium udało się nam go przełączać za pomocą pojedynczego fotonu. I to w temperaturze pokojowej. Jednak minie sporo czasu, zanim taka technologia będzie mogła trafić do procesorów optycznych, dodaje profesor Pawlos Lagudakis.
      Możliwość przełączania za pomocą pojedynczego fotonu oznacza, że układ jest niezwykle energooszczędny i zostało niewiele miejsca na jego dalsze udoskonalenie. Oczywiście musimy przy tym pamiętać, że obecnie działa to jedynie w wyspecjalizowanym laboratorium. Jednak tak właśnie zaczyna się wielu historia technologii, które w końcu trafiają do codziennego użytku. Większość współczesnych tranzystorów elektrycznych potrzebuje dziesiątki razy więcej energii, by się przełączyć, a te, którym wystarczy pojedynczy elektron, działają znacznie wolniej niż zademonstrowany właśnie przełącznik optyczny.
      Jednak szybkość i energooszczędność to nie jedyne zalety nowej technologii. Równie ważny jest fakt, że przełącznik działa w temperaturze pokojowej i nie wymaga chłodzenia. Tymczasem systemy chłodzenia potrzebne współczesnym komputerom nie tylko wpływają na koszty samego sprzętu, ale też znacząco zwiększają zużycie energii koniecznej do ich zasilania.
      Urządzenie składa się z dwóch laserów. Bardzo słaby promień lasera kontrolnego jest używany do przełączania stanu drugiego jaśniejszego z laserów. Do przełączenia wystarczy kilka fotonów, stąd wynika wysoka efektywność całości. Przełączanie odbywa się wewnątrz mikrownęki. To 35-nanometrowej grubości organiczny polimer półprzewodzący zamknięty pomiędzy dwiema nieorganicznymi warstwami o wysokim współczynniku odbicia. Mikrownęka zbudowana jest w taki sposób, by jak najdłużej więzić nadchodzące światło, prowadząc w ten sposób do jego sprzężenia z materiałem wnęki.
      Oddziaływanie światła z materią to podstawa działania nowego urządzenia. Gdy fotony sprzęgają się z parami dziura-elektron – tworzącymi kwazicząstkę o nazwie ekscyton – pojawiają się kwazicząstki ekscyton-polaryton. Gdy silniejszy z laserów oświetla przełącznik powstają tysiące identycznych krótko żyjących kwazicząstek tworzących kondensat Bosego-Einsteina, w którym kodowany jest stan urządzenia „0” lub „1”.
      Najpierw za pomocą silniejszego lasera we wnęce tworzone są kwazicząstki o energiach większych niż energia podstawowa. Przełącznik znajduje się w stanie „0” Do przełączenia potrzebny jest laser słabszy, za pomocą którego tworzona jest grupa kwazicząstek o energii podstawowej. Ich pojawienie się wywołuje lawinowy proces przełączania się pozostałych kwazicząstek do stanu podstawowego. W ten sposób uzyskujemy stan „1”. Czas przełączania liczony jest w femtosekundach, dzięki czemu przełącznik jest ponad 100-krotnie szybszy od współczesnych tranzystorów.
      Naukowcy użyli kilku sztuczek, by utrzymać zapotrzebowanie na energię na jak najniższym poziomie przy jednoczesnym zmaksymalizowaniu pracy urządzenia. W efektywnym przełączaniu pomagają wibracje molekuł półprzewodzącego polimeru. Konieczne było precyzyjne dopasowanie częstotliwości pracy laserów, stanu kondensatu i energii wibracji molekuł polimeru.
      Przed nami jeszcze sporo pracy. Musimy zmniejszyć całkowite zapotrzebowania urządzenia na energię. Obecnie jest ono zdominowane przez silniejszy z laserów, który utrzymuje przełącznik w gotowości. Prawdopodobnie trzeba będzie wykorzystać tutaj perowskitowego superkryształu, z którym wcześniej eksperymentowaliśmy. Są one doskonałymi kandydatami to zbudowania naszego przełącznika, gdyż zapewniają bardzo silną interakcję światła z materią, stwierdzają autorzy badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dr Jakub Waldemar Trzciński z Politechniki Warszawskiej (PW) pracuje nad alternatywą dla doustnej terapii osteoporozy. W ramach projektu AlendroSkin powstanie środek do naskórnego stosowania. Nowoczesna nanoformulacja pomoże chorym na osteoporozę, a także pozwoli skuteczniej zapobiegać utracie masy kośćca u osób z grupy ryzyka.
      Obecnie profilaktyka i farmakoterapia osteoporozy opierają się na środkach doustnych, które zawierają niehormonalne pochodne bisfosfonianowe, m.in. kwas alendronowy. Jak podkreślono w komunikacie uczelni, obarczony jest on bardzo niską biodostępnością z przewodu pokarmowego, poniżej 2%, a także ograniczonym wchłanianiem. Poza tym doustne stosowanie kwasu alendronowego wywołuje różne działania niepożądane, takie jak podrażnienia przełyku oraz zapalenie żołądka czy jelita (substancja może powodować miejscowe podrażnienia błony śluzowej górnego odcinka przewodu pokarmowego).
      Z myślą o pacjentach i środowisku medycznym rozpoczęliśmy projekt, którego celem jest wytworzenie hydrożelowej formulacji zawierającej nanokompleks kwasu alendronowego związanego kationami wapnia, umożliwiającymi transport wytworzonych nanostruktur w głąb skóry, tworząc skuteczną alternatywę dla obecnie stosowanej doustnej terapii farmakologicznej w patologicznych zmianach masy kostnej szkieletu ludzkiego - wyjaśnia kierownik projektu, dr Jakub Waldemar Trzciński z Wydziału Inżynierii Chemicznej i Procesowej PW.
      Ze względu na wydalanie kwasu niewbudowanego w kościec terapia kwasem alendronowym ma charakter progresywny; trzeba podać wiele dawek leku, terapia jest długotrwała, a pacjent musi być objęty stałą kontrolą lekarską. Nic więc dziwnego, że specjaliści poszukują metod alternatywnych.
      Jak podkreślają naukowcy, w ramach projektu AlendroSkin zostanie stworzony środek w formie hydrożelowej z nanokompleksem do transportu przezskórnego, zawierający molekuły kwasu alendronowego, kationy wapniowe oraz substancje lipofilowe, umożliwiające dostarczenie wytworzonych nanostruktur w głąb skóry. Wykorzystanie formulacji hydrożelowej, opartej na biozgodnych polimerach, pozwoli kontrolować uwalnianie kwasu alendronowego do organizmu oraz ochroni nanokompleks przed środowiskiem zewnętrznym.
      Akademicy przeprowadzą szereg testów. Za pomocą metod analitycznych i spektroskopowych zbadają właściwości fizykochemiczne hydrożelowej formulacji. Dzięki dostępnym komercyjnie modelom skórnym ocenią potencjał penetracyjny. Cytotoksyczność i biozgodność materiału zostanie zaś oszacowana na mysich fibroblastach i ludzkich keratynocytach.
      Projekt realizują dr Jakub Waldemar Trzciński, dr inż. Paulina Trzaskowska (Centrum Zaawansowanych Materiałów i Technologii, CEZAMAT, PW), dr inż. Michał Wojasiński (Wydział Inżynierii Chemicznej i Procesowej, IChiP, PW), dr inż. Maciej Trzaskowski (CEZAMAT PW), mgr inż. Aleksandra Kuźmińska (IChiP PW) i mgr inż. Kamil Kopeć (IChiP PW).
      Projekt "Naskórna hydrożelowa nanoformulacja kwasu alendronowego do uwalniania transdermalnego" (AlendroSkin) otrzymał dofinansowanie Narodowego Centrum Badań i Rozwoju w ramach konkursu LIDER XI. Ma być realizowany do grudnia 2023 r.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...