Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Kaare Lund Rasmussen, chemik z Uniwersytetu Południowej Danii, uważa, że mnisi przepisujący w skryptorium inkunabuły umierali z powodu zatrucia rtęcią. Pierwiastek ten wykorzystywano do produkcji czerwonego atramentu (Journal of Archaeological Science).

Naukowiec doszedł do tego wniosku, badając średniowieczne kości z 6 duńskich cmentarzy. Dowodzi on jednocześnie, że odkrył nieznaną dotąd chorobę FOS, która podobnie jak trąd, w charakterystyczny sposób zniekształcała czaszkę (powstawały na niej wgłębienia). Nie wiemy, czy była śmiertelna, ale wygląda na bolesną i równie poważną jak trąd.

Tworząc swoją teorię, nie mógł pominąć faktu, że ok. 79% pogrzebanych osób z trądem i 35% z syfilisem zażywało leki z rtęcią. Mimo to zakonnicy spoczywający przy ścieżce cysterskiego opactwa nie chorowali ani na trąd, ani na syfilis, a w ich kościach występowała rtęć.

Rasmussen uważa więc, że mnisi albo zakazili się podczas przygotowywania i podawania leków, albo podczas przepisywania ksiąg, w których malowali ozdobne litery.

Duński zespół pobrał do badań próbki różnych kości, m.in. franciszkanów z klasztoru w Svendborgu. W odróżnieniu od cystersów, nie stwierdzono u nich zatrucia rtęcią (wynika to zapewne z odmiennych zajęć). Naukowcy pamiętali też o tym, że część osób żyjących w średniowieczu jadała głównie ryby morskie. Zatrucie rtęcią w wyniku przestrzegania takiej diety jest jednak charakterystyczne dla naszych czasów. Pięćset lat temu nie odnotowywano podobnych typów zanieczyszczenia wód i żyjących w nich organizmów.

 

Krwistoczerwony atrament uzyskiwano dzięki minerałowi: cynobrowi, który z chemicznego punktu widzenia jest siarczkiem rtęci (HgS). Rasmussen nawet dziś przestrzega przed dotykaniem starych pergaminów. W tym miejscu przypomina się scena z Imienia róży Umberto Eco, gdzie ślinienie palców podczas przewracania stron doprowadziło do śmierci jednego z bohaterów. Co prawda w jego przypadku chodziło o zatrute paginy, a nie o pigment, ale nie da się zaprzeczyć, że istnieje pewne podobieństwo...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy informują o zidentyfikowaniu najstarszego miejsca, w którym człowiek zanieczyścił rtęcią siebie i środowisko naturalne. Zespół specjalistów przebadał kości 370 osób z 50 grobów znalezionych na 23 stanowiskach archeologicznych na południu Hiszpanii i Portugalii. Szczątki pochodzą z okresu 5000 lat, począwszy od neolitu. Efektem pracy jest opublikowany na łamach Journal of Osteoarcheology artykuł The use and abuse of cinnabar in Late Neolithic and Copper Age Iberia.
      Rtęć to niezwykle niebezpieczny pierwiastek. Światowa Organizacja Zdrowia wymienia go wśród 10 największych zagrożeń dla współczesnego zdrowia publicznego. Uczeni z z Hiszpanii, Portugalii Brazylii i USA informują, że najwyższy poziom ekspozycji ludzi na działanie rtęci miał miejsce w epoce miedzi, 2900–2600 lat przed naszą erą. Wówczas to bardzo rozpowszechniło się użycie cynobru, naturalnie występującego minerału zawierającego siarczek rtęci. Był on wykorzystywany w roli barwnika, któremu przypisywano znacznie symboliczne i religijne.
      Największa na świecie kopalnia cynobru, wpisana na Listę Światowego Dziedzictwa UNESCO, znajduje się w Almadén w Hiszpanii. Prace wydobywcze rozpoczęto tam już w neolicie, przed 7000 lat. Do początku epoki miedzi, przed 5000 lat, cynober stał się bardzo pożądanym cennym materiałem. W Portugalii i Andaluzji spotykamy groby ozdobione tym barwnikiem. Był używany zarówno do dekorowania samych ścian, jak i malowania figurek czy przedmiotów składanych ze zmarłymi. Miał znaczenie symboliczne, ezoteryczne. Tak powszechne używanie cynobru musiało oznaczać, że sporo osób było narażonych na kontakt z niebezpiecznym poziomem rtęci. Sproszkowany cynober można było przypadkiem wchłonąć przez drogi oddechowe czy przenieść do ust wraz z pożywieniem.
      I rzeczywiście, badania kości niektórych zmarłych wykazały, że doszło w nich do koncentracji rtęci rzędu 400 ppm (części na milion). O tym, jak olbrzymia to wartość niech świadczy fakt, że WHO uznaje, iż bezpieczny poziom rtęci we włosach nie powinien przekraczać 2 ppm.
      Rtęć musiała powodować u wielu z tych osób poważne skutki zdrowotne, a poziom 400 ppm w organizmie jest tak duży, że nie można wykluczyć celowego spożywania lub wdychania sproszkowanego cynobru. Praktyki takie mogły mieć związek z symbolicznym i rytualnym znaczeniem, jaki nadawano barwnikowi. Autorzy badań wykluczają bowiem, by naturalna ekspozycja na rtęć w środowisku – na przykład na rtęć zawartą w żywności – mogła skutkować tak wielką jej koncentracją w organizmie.
      Pod koniec epoki miedzi i na początku epoki brązu użycie cynobru na badanym obszarze znacznie się zmniejsza, do tego stopnia, że znika on z wielu miejsc, w których wcześniej był rozpowszechniony. Barwnik jednak był popularny przez kolejne tysiące lat. Znajdziemy go w sztuce starożytnego Rzymu, manuskryptach średniowiecza czy renesansowym malarstwie. Do tego jednak czasu cynober produkowano w procesie chemicznym, gdyż znano niebezpieczeństwa związane z jego wydobyciem. Nadal był on toksyczny, gdyż do produkcji używana była rtęć.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tonąca padlina ryb żyjących w wodach przy powierzchni transportuje toksyczną rtęć do najbardziej odległych i niedostępnych części oceanów, w tym do Rowu Mariańskiego.
      Większość tej rtęci zaczyna swoją długą podróż do rowów oceanicznych jako zanieczyszczenie atmosferyczne z elektrowni węglowych, górnictwa czy fabryk cementu.
      To 2 podstawowe wnioski, wysnute przez zespół, którego pracami kierował Joel Blum z Uniwersytetu Michigan. Autorzy publikacji z pisma PNAS analizowali izotopowy skład rtęci z ryb (dennikowatych) i skorupiaków (obunogów) z dwóch rowów oceanicznych: Rowu Mariańskiego i Kermadec.
      Rtęć, która jak sądzimy, była kiedyś w stratosferze, znajduje się teraz w najgłębszych rowach oceanicznych na Ziemi - podkreśla Blum.
      Wcześniej wiele osób uważało, że antropogeniczna rtęć jest ograniczona głównie do 1000 m pod powierzchnią oceanów. My jednak odkryliśmy, że choć część rtęci w rowach oceanicznych ma pochodzenie naturalne, to większość wiąże się z ludzką działalnością.
      Na czerwcowej konferencji ekipa Bluma i grupa Ruoyu Suna z Tianjin University niezależnie doniosły o wykryciu antropogenicznej rtęci w organizmach z rowów oceanicznych.
      Chińczycy (ich wyniki ukazały się 7 lipca w Nature Communications) doszli do wniosku, że rtęć dostaje się do rowów oceanicznych z mikroskopijnymi fragmentami tonącej materii organicznej, nieustannie opadającymi z położonych wyżej warstw wody.
      W artykule z PNAS Blum i inni sugerują jednak, że większość rtęci dostaje się do rowów z padliną ryb żerujących w wyższych warstwach oceanu.
      Czemu ma znaczenie, czy rtęć z rowów pochodzi z tonącej padliny ryb, czy z deszczu detrytusu? Ponieważ naukowcy i ustawodawcy chcą wiedzieć, jak globalne zmiany w emisji rtęci wpłyną na jej poziom w organizmach morskich. Mimo że w ostatnich latach emisje w Ameryce Północnej i Europie uległy obniżeniu, Chiny oraz Indie rozszerzają wykorzystanie węgla, przez co emisje w skali globalnej rosną.
      Próbując określić wpływ na organizmy morskie, naukowcy polegają na modelach globalnych. Dopracowanie tych modeli wymaga jak najdokładniejszego określenia obiegu rtęci w oceanach, a także między oceanem a atmosferą.
      Owszem, jemy ryby schwytane w płytszych wodach, a nie w rowach oceanicznych. Aby jednak modelować przyszłe zmiany w wodach blisko powierzchni, musimy określić obieg rtęci w całym oceanie - wyjaśnia Blum.
      Naukowcy przypominają, że każdego roku w wyniku ludzkiej aktywności do atmosfery dostaje się sporo rtęci (> 2000 t). Bywa, że pokonuje ona wiele kilometrów, nim osiądzie na ziemi lub na powierzchni wody. Mikroorganizmy mogą ją biotransformować do metylortęci (MeHg), która akumuluje się w rybach, osiągając poziomy toksyczne dla ludzi i innych stworzeń.
      Naukowcy przypominają o neurotoksycznym działaniu MeHg. Wg autorów publikacji "Ryby i owoce morza jako źródło narażenia człowieka na metylortęć" [PDF], metylortęć łatwo przenika przez barierę krew-mózg oraz krew-łożysko. Przechodzi także do mleka matek, przyczyniając się do narażenia niemowląt, które mogą kumulować rtęć w krwinkach i mózgu. Powoduje to uszkodzenie ośrodkowego układu nerwowego. Mózg rozwijającego się płodu jest najbardziej wrażliwy na toksyczne działanie metylortęci.
      W ramach swoich badań Blum i inni analizowali skład izotopowy metylortęci z tkanek dennikowatych i obunogów, schwytanych na głębokości do 10.250 m w Rowie Mariańskim i do 10.000 m w Rowie Kermadec.
      Zważywszy na głębokość rowów i ciśnienie, trudno zdobyć te próbki. Rowy oceaniczne należą do najsłabiej zbadanych ekosystemów, a dennikowate z Rowu Mariańskiego odkryto dopiero w 2014 r.
      Akademicy przypominają, że rtęć ma siedem stabilnych (nieradioaktywnych) izotopów. Stosunek różnych izotopów daje unikatową chemiczną sygnaturę, którą można wykorzystać jako narzędzie diagnostyczne do porównywania próbek z poszczególnych lokalizacji.
      Stosując różne techniki (wiele z nich powstało w laboratorium Bluma), naukowcy wykazali, że rtęć z obunogów i dennikowatych z rowów miała sygnaturę pasującą do rtęci z żerujących na głębokości ok. 500 m ryb ze środkowego Pacyfiku. Ryby te były analizowane przez zespół Bluma w ramach wcześniejszego badania.
      Jednocześnie Amerykanie zauważyli, że izotopowy skład rtęci z tonących drobinek detrytusu nie pasował do sygnatury organizmów z rowów.
      Naukowcy wyciągnęli więc wniosek, że rtęć z organizmów z rowów została przetransportowana z padliną ryb żerujących w oświetlonej warstwie wody blisko powierzchni (tam zaś większość rtęci pochodzi ze źródeł antropogenicznych).
      Badaliśmy organizmy z rowów, ponieważ żyją one w najgłębszych i najodleglejszych zakątkach Ziemi i oczekiwaliśmy, że tamtejsza rtęć będzie niemal wyłącznie pochodzenia geologicznego - z głębinowych źródeł wulkanicznych. Tymczasem, ku naszemu zdziwieniu, znaleźliśmy dowody wskazujące, że rtęć w organizmach z rowów pochodzi z warstwy fotycznej oceanu.
      Antropogeniczna rtęć trafia do oceanu w postaci opadu, depozycji suchej (kurzu naniesionego przez wiatr), a także spływu z rzek.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Florida zaobserwowali, że zwiększenie ilości rtęci przyjmowanej przez ibisy białe wraz z pożywieniem, prowadzi do zmiany ich zachowań seksualnych. Szkodliwy związek czynił z nich homoseksualistów.
      Uczeni chcieli potwierdzić swoje przypuszczenia, że to zanieczyszczenie pokarmu przyjmowanego przez ptaki prowadzi do zmniejszonej liczby urodzin młodych. Jednak nie spodziewali się, odbywa się to poprzez zmianę zachowań seksualnych samców.
      Wiedzieliśmy, że rtęć negatywnie wpływa na hormony. Jednak w tych badaniach najbardziej zaniepokoiło nas to, ża nawet niewielkie ilości rtęci miały wpływ na hormony i dobieranie się w pary. To oznacza, że cała fauna może być dotknięta tym problemem - mówi profesor Peter Frederick, który kierował pięcioletnią pracą zespołu badawczego.
      Po raz pierwszy dowiedziono, że rtęć wpływa na zachowania seksualne ptaków i wykazano związek pomiędzy zanieczyszczeniem środowiska tym pierwiastkiem a zmniejszoną populacją młodych.
      Problem rtęci w środowisku Parku Narodowego Everglades ujawnił się na przełomie lat 80. i 90. ubiegłego wieku, gdy u wielu zwierząt zauważono podwyższony poziom tego pierwiastka. Władze zaczęły przeciwdziałać dalszej degradacji środowiska i pod koniec lat 90. poziom rtęci gwałtownie spadł. Jednocześnie zaobserwowano, że ibisy białe zaczęły niezwykle intensywnie się rozmnażać. Początkowo uważano, że lepsze warunki hydrogeologiczne skłoniły ptaki do posiadania większej liczby młodych, jednak szybko nabrano podejrzeń, że w grę wchodzi jeszcze inny czynnik. Profesor Frederic i doktoran Nilmini Jayasena rozpoczęli badania problemu rtęci. Odkryli, że do spadku jej poziomu w środowisku przyczyniła się lepsza polityka gospodarowania odpadami miejskimi i medycznymi oraz wyeliminowanie baterii zawierających rtęć.
      Uczeni wybudowali ptaszarnię i zamknęli w niej 160 młodych ibisów podzielonych na cztery grupy składające się z takiej samej liczby samców i samic. Ptakom podawano pożywienie, które zawierało różne ilości rtęci: mało, średnio i dużo. Grupa kontrolna otrzymywała pożywienie bez rtęci. Jednocześnie zadbano o to, by nawet grupa przyjmująca dużo rtęci nie otrzymywała jej więcej, niż wchłaniają dziko żyjące ptaki.
      Okazało się, że im więcej rtęci podawano ptakom, tym większy był odsetek par homoseksualnych. W grupie, która spożywała najwięcej rtęci aż 55% samców łączyło się z innymi samcami. W wyniku tego, w grupie przyjmującej dużo rtęci urodziło się o 35% mniej młodych niż w grupie kontrolnej.
      Wiele lat temu spędziłem tysiące godzin dokumentując zachowania ibisów w miejscu, które nie było zanieczyszczone rtęcią. Ani razu nie widziałem tam, by samce łączyły się z samcami - mówi profesor Frederic.
      Uczony przestrzega jednak przed zbyt pochopnym przekładaniem wyników jego badań na zachowania człowieka. Przypomina, że prowadzono już badania nad wpływem rtęci na ludzi i nie zauważono zmiany zachowań seksualnych. Po drugie, ludzka seksualność jest na tyle skomplikowane, iż jest mało prawdopodobne, by pojedynczy czynnik mógł ją zmienić. W końcu zwyczaje seksualne i fizjologia człowieka i ptaków są bardzo odmienne.
    • przez KopalniaWiedzy.pl
      Ryby żyjące w pobliżu elektrowni węglowych zawierają mniej rtęci niż zwierzęta występujące na innych obszarach. Naukowcy uważają, że dzieje się tak przez wysokie stężenia selenu, które także nie są dobre, bo mogą zagrażać nawet śmiercią. Zatrucie selenem zwiększa np. ryzyko rozwoju nowotworów, o uszkodzeniach skóry nie wspominając.
      Odkryliśmy, że u ryb z jezior położonych co najmniej 30 km od elektrowni węglowych poziom rtęci jest ponad 3-krotnie wyższy niż u przedstawicieli tego samego gatunku z jezior zlokalizowanych w promieniu 10 km od zakładu – opowiada Dana Sackett, doktorantka z Uniwersytetu Stanowego Karoliny Północnej. Naukowcy byli bardzo zaskoczeni wynikami, ponieważ w skali globalnej elektrownie węglowe są jednym z wiodących emitentów atmosferycznych zanieczyszczeń rtęcią, a duże ilości Hg osadzają się w obrębie 10 km od kominów.
      Amerykanie badali bassy wielkogębowe, zwane inaczej okoniopstrągami (Micropterus salmoides), oraz samogłowy błękitne (Lepomis macrochirus) z 14 jezior słodkowodnych. Siedem znajdowało się w promieniu 10 km od elektrowni, a tyle samo leżało co najmniej 30 km od zakładu. Wybrano właśnie te gatunki ryb, ponieważ są one często łapane i zjadane przez wędkarzy, poza tym zajmują dwa różne miejsca w łańcuchu pokarmowym. Te pierwsze są tzw. drapieżnikami alfa ze szczytu szeregu organizmów i żywią się mniejszymi rybami. Jako że stężenie rtęci wzrasta w miarę przesuwania się na coraz wyższe ogniwa łańcucha troficznego, u okoniopstrągów powinno ono być wysokie. Samogłowy są od nich mniejsze i polegają głównie na bezkręgowcach, owadach, dlatego zespół Sackett spodziewał się, że w ich tkankach powinno się zakumulować mniej Hg.
      Naukowcy stwierdzili, że u obu gatunków poziom metalu ciężkiego wzrastał ponad 3-krotnie w jeziorach bardziej oddalonych od elektrowni. Oznacza to, że lokalizacja wpływa na ryby bez względu na miejsce zajmowane w łańcuchu pokarmowym. Ichtiolodzy sądzą, że niższe stężenia rtęci są skutkiem poziomu selenu. W tkankach pobranych od ryb zamieszkujących jeziora położone w pobliżu elektrowni węglowych stężenia selenu były 3 razy wyższe niż w próbkach z bardziej oddalonych zbiorników wodnych.
      Selen jest również emitowany przez elektrownie węglowe. Wykazuje antagonistyczne działanie wobec rtęci (dokładny mechanizm tego zjawiska pozostaje na razie nieznany). Wiadomo, że zapobiega akumulowaniu przez ryby wysokich stężeń rtęci, ale naukowcy nie wiedzą jak.
    • przez KopalniaWiedzy.pl
      Rtęć jest jednym z najbardziej trujących pierwiastków. Niestety, wiele z używanych przez człowieka technologii powoduje skażanie środowiska, w tym środowiska wodnego, związkami rtęci. Jak się okazuje, mimo znacznie niższych stężeń rtęci w oceanach, jest ona tam znacznie bardziej niebezpieczna niż w wodzie słodkiej.
      Jednym z najpowszechniejszych związków rtęci, a przy tym wyjątkowo trującym jest metylortęć. Ten organiczny związek jest silną neurotoksyną, powodującą uszkodzenie między innymi nerek, mózgu i wątroby. Może przenikać do organizmu zarówno w pożywieniu, jak i poprzez układ oddechowi, czy przez skórę, ponadto kumuluje się w organizmie.
      Kumulacja związków rtęci w organizmach zwierząt jest najczęstszą przyczyną zatruć. Wg badań, na przykład w Stanach Zjednoczonych w organizmach aż 8% kobiet wykrywa się stężenie rtęci przekraczające bezpieczne normy. Jedną z przyczyn jest spożywanie ryb zatrutych tym metalem. Dlaczego jednak organizmy morskie zawierają większe ilości tego szkodliwego pierwiastka, skoro jego stężenie w wodzie morskiej jest znacznie mniejsze niż w słodkiej?
      Do tej pory istniejące technologie nie pozwalały na odkrycie przyczyny z powodu zbyt małej czułości i problemów z mierzeniem i wykrywaniem rtęci w morskiej wodzie. Teraz jednak zbadaniem zagadnienia zajęła się Heileen Hsu-Kim z Uniwersytetu Duke'a. Przyczyną, jak się okazało, jest sama słona woda.
      Metylortęć bardzo łatwo łączy się z materią organiczną: na przykład szczątkami obumarłych roślin, dlatego szybko trafia do łańcucha pokarmowego. Zagrożenie z jej strony jest jednak zmniejszane przez promieniowanie słoneczne, które powoduje rozkład związku. Dokładniej, rozpad następuje dzięki reaktywnym formom tlenu, które powstają w wodzie pod wpływem słońca. Tak się dzieje w wodzie słodkiej. Kiedy jednak metylortęć trafi do wody morskiej, ulega rozpadowi bardzo powoli. Jej cząstki bowiem łączą się chętnie z chlorkami, czyli z samą solą. Takie połączenie jest bardzo odporne i nie ulega rozkładowi pod wpływem promieniowania.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...