Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Naukowcy ustalili, skąd pochodzi rtęć występująca w organizmach z rowów oceanicznych

Recommended Posts

Tonąca padlina ryb żyjących w wodach przy powierzchni transportuje toksyczną rtęć do najbardziej odległych i niedostępnych części oceanów, w tym do Rowu Mariańskiego.

Większość tej rtęci zaczyna swoją długą podróż do rowów oceanicznych jako zanieczyszczenie atmosferyczne z elektrowni węglowych, górnictwa czy fabryk cementu.

To 2 podstawowe wnioski, wysnute przez zespół, którego pracami kierował Joel Blum z Uniwersytetu Michigan. Autorzy publikacji z pisma PNAS analizowali izotopowy skład rtęci z ryb (dennikowatych) i skorupiaków (obunogów) z dwóch rowów oceanicznych: Rowu Mariańskiego i Kermadec.

Rtęć, która jak sądzimy, była kiedyś w stratosferze, znajduje się teraz w najgłębszych rowach oceanicznych na Ziemi - podkreśla Blum.

Wcześniej wiele osób uważało, że antropogeniczna rtęć jest ograniczona głównie do 1000 m pod powierzchnią oceanów. My jednak odkryliśmy, że choć część rtęci w rowach oceanicznych ma pochodzenie naturalne, to większość wiąże się z ludzką działalnością.

Na czerwcowej konferencji ekipa Bluma i grupa Ruoyu Suna z Tianjin University niezależnie doniosły o wykryciu antropogenicznej rtęci w organizmach z rowów oceanicznych.

Chińczycy (ich wyniki ukazały się 7 lipca w Nature Communications) doszli do wniosku, że rtęć dostaje się do rowów oceanicznych z mikroskopijnymi fragmentami tonącej materii organicznej, nieustannie opadającymi z położonych wyżej warstw wody.

W artykule z PNAS Blum i inni sugerują jednak, że większość rtęci dostaje się do rowów z padliną ryb żerujących w wyższych warstwach oceanu.

Czemu ma znaczenie, czy rtęć z rowów pochodzi z tonącej padliny ryb, czy z deszczu detrytusu? Ponieważ naukowcy i ustawodawcy chcą wiedzieć, jak globalne zmiany w emisji rtęci wpłyną na jej poziom w organizmach morskich. Mimo że w ostatnich latach emisje w Ameryce Północnej i Europie uległy obniżeniu, Chiny oraz Indie rozszerzają wykorzystanie węgla, przez co emisje w skali globalnej rosną.

Próbując określić wpływ na organizmy morskie, naukowcy polegają na modelach globalnych. Dopracowanie tych modeli wymaga jak najdokładniejszego określenia obiegu rtęci w oceanach, a także między oceanem a atmosferą.

Owszem, jemy ryby schwytane w płytszych wodach, a nie w rowach oceanicznych. Aby jednak modelować przyszłe zmiany w wodach blisko powierzchni, musimy określić obieg rtęci w całym oceanie - wyjaśnia Blum.

Naukowcy przypominają, że każdego roku w wyniku ludzkiej aktywności do atmosfery dostaje się sporo rtęci (> 2000 t). Bywa, że pokonuje ona wiele kilometrów, nim osiądzie na ziemi lub na powierzchni wody. Mikroorganizmy mogą ją biotransformować do metylortęci (MeHg), która akumuluje się w rybach, osiągając poziomy toksyczne dla ludzi i innych stworzeń.

Naukowcy przypominają o neurotoksycznym działaniu MeHg. Wg autorów publikacji "Ryby i owoce morza jako źródło narażenia człowieka na metylortęć" [PDF], metylortęć łatwo przenika przez barierę krew-mózg oraz krew-łożysko. Przechodzi także do mleka matek, przyczyniając się do narażenia niemowląt, które mogą kumulować rtęć w krwinkach i mózgu. Powoduje to uszkodzenie ośrodkowego układu nerwowego. Mózg rozwijającego się płodu jest najbardziej wrażliwy na toksyczne działanie metylortęci.

W ramach swoich badań Blum i inni analizowali skład izotopowy metylortęci z tkanek dennikowatych i obunogów, schwytanych na głębokości do 10.250 m w Rowie Mariańskim i do 10.000 m w Rowie Kermadec.

Zważywszy na głębokość rowów i ciśnienie, trudno zdobyć te próbki. Rowy oceaniczne należą do najsłabiej zbadanych ekosystemów, a dennikowate z Rowu Mariańskiego odkryto dopiero w 2014 r.

Akademicy przypominają, że rtęć ma siedem stabilnych (nieradioaktywnych) izotopów. Stosunek różnych izotopów daje unikatową chemiczną sygnaturę, którą można wykorzystać jako narzędzie diagnostyczne do porównywania próbek z poszczególnych lokalizacji.

Stosując różne techniki (wiele z nich powstało w laboratorium Bluma), naukowcy wykazali, że rtęć z obunogów i dennikowatych z rowów miała sygnaturę pasującą do rtęci z żerujących na głębokości ok. 500 m ryb ze środkowego Pacyfiku. Ryby te były analizowane przez zespół Bluma w ramach wcześniejszego badania.

Jednocześnie Amerykanie zauważyli, że izotopowy skład rtęci z tonących drobinek detrytusu nie pasował do sygnatury organizmów z rowów.

Naukowcy wyciągnęli więc wniosek, że rtęć z organizmów z rowów została przetransportowana z padliną ryb żerujących w oświetlonej warstwie wody blisko powierzchni (tam zaś większość rtęci pochodzi ze źródeł antropogenicznych).

Badaliśmy organizmy z rowów, ponieważ żyją one w najgłębszych i najodleglejszych zakątkach Ziemi i oczekiwaliśmy, że tamtejsza rtęć będzie niemal wyłącznie pochodzenia geologicznego - z głębinowych źródeł wulkanicznych. Tymczasem, ku naszemu zdziwieniu, znaleźliśmy dowody wskazujące, że rtęć w organizmach z rowów pochodzi z warstwy fotycznej oceanu.

Antropogeniczna rtęć trafia do oceanu w postaci opadu, depozycji suchej (kurzu naniesionego przez wiatr), a także spływu z rzek.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Pisać do ciebie i twoich współplemieńców, to jak tłuc granulatem styropianowym o ściany ze zbrojeniowego betonu. Mało skuteczne, ale i niewymagające wysiłku :)

Jeżeli jesz ryby, to w 100g ryby, szczególnie z zanieczyszczonych akwenów jak Bałtyk albo ryby długożyjące jak tuńczyk, masz KILA RZĘDÓW WIELKOŚCI WIĘCEJ (1 000 - 100 000 razy więcej) rtęci niż w jakiejkolwiek szczepionce, a nikt od ryb nie choruje. Rtęć jaka była stosowana do niedawna w szczepionkach jest w formie która jest usuwana z organizmu w przeciwieństwie do tej pochodzącej z zanieczyszczeń.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Wydziału Fizyki UW oraz z Narodowego Centrum Badań Jądrowych wskazują na możliwość wytworzenia w laboratoriach w niedługim czasie dwóch nowych pierwiastków superciężkich oraz kilku nowych izotopów pierwiastków już odkrytych. W obliczeniach uwzględniających nie brane wcześniej pod uwagę procesy wykorzystano model teoretyczny stworzony w Warszawie.
      Wolne miejsca w 7. rzędzie układu okresowego zostały niedawno wypełnione, a nowe pierwiastki uzyskały swoje nowe nazwy. Najcięższy (o liczbie protonów Z=118) nazwano oganesson na cześć akademika i odkrywcy Yuriego Oganessiana. Naukowców wciąż jednak nurtuje pytanie czy uda się wytworzyć sztucznie jeszcze cięższe pierwiastki? Jeśli tak, to do której grupy układu okresowego będą one przynależeć? Ze względu na silne efekty relatywistyczne, które deformują rozkłady elektronów na powłokach atomowych, odpowiedź na to pytanie nie jest prosta i oczywista, a wpływ deformacji relatywistycznych na właściwości chemiczne trudny do przewidzenia.
      Superciężkie pierwiastki otrzymuje się bombardując ciężkie tarcze jądrowe dużo lżejszymi rozpędzonymi jonami. Zarówno tarcze, pociski jak i energie bombardowania muszą być odpowiednio dobrane. Prawdopodobieństwo zajścia oczekiwanej reakcji jądrowej uwieńczonej wytworzeniem na ułamek sekundy jądra o nowym składzie jest ekstremalnie małe. Istniejące akceleratory służące do tego typu badań osiągnęły już granice swoich możliwości, ale buduje się nowe zderzacze, takie jak SHE-Factory w międzynarodowym instytucie w Dubnej w Rosji, które zwiększą "potencjał wytwórczy" nawet stukrotnie.
      W Warszawie dysponujemy prostym, ale wiarygodnym modelem pozwalającym oszacować prawdopodobieństwo wytworzenia nowych pierwiastków w powstających nowych instalacjach – wyjaśnia profesor Krystyna Siwek-Wilczyńska z wydziału fizyki UW. Model nazywany modelem "fuzji przez dyfuzję" (ang. Fusion by Diffusion - FBD), w którym proces prowadzący do powstania nowych jąder (syntezy jądrowej) dzielimy na trzy niezależne, następujące kolejno po sobie etapy. Pierwszy opisuje prawdopodobieństwo pokonania odpychającej bariery związanej z dużym dodatnim ładunkiem jąder w zainicjowanej reakcji. Ta faza w miarę łatwo poddaje się modelowaniu.
      Dużo trudniejszy w opisie jest kolejny etap, określający prawdopodobieństwo takiego przekonfigurowania układu dwóch składników, aby nowo powstała konfiguracja była na tyle stabilna, by można było traktować ją jako istniejący przez chwilę samodzielny niezależny układ jądrowy – kontynuuje wyjaśnienia profesor Michał Kowal, kierownik Zakładu Fizyki Teoretycznej NCBJ, współautor pracy. Prawdopodobieństwo zajścia takiego procesu jest zwykle niesłychanie małe. Jeśli proces zajdzie, to takie jądro nazywamy jądrem złożonym.
      Do obliczeń drugiego etapu wykorzystujemy równania Smoluchowskiego opisujące proces dyfuzji i stąd pochodzi nazwa naszego modelu – opisuje prof. Wilczyńska. Jednak analogia ze zwykłym procesem dyfuzji nie jest oczywista. Możemy w bardzo uproszczony sposób powiedzieć, że to układ jądrowy dyfunduje z konfiguracji początkowej do konfiguracji jądra złożonego. Przeszkodą dla tego procesu jest bariera potencjału oddzielająca obie konfiguracje. Proces dyfuzji jest możliwy dzięki termicznym fluktuacjom kształtu układu. Trzeci etap to rozpad utworzonego jądra złożonego. W naszych obliczeniach uwzględniamy kilka możliwych kanałów rozpadu. Najważniejsze to emisja neutronu i rozszczepienie. Nowością jest włączenie nieuwzględnionych wcześniej w modelu FBD możliwości emisji protonu lub nawet cząstki alfa. Prawdopodobieństwo emisji cząstki naładowanej jest mniejsze od prawdopodobieństwa dwóch konkurencyjnych procesów emisji neutronu lub rozszczepienia. Okazało się jednak, że wyznaczone wartości przekrojów czynnych dla tych nowych kanałów rozpadu wskazują na możliwość ich obserwacji w nowo budowanych zderzaczach. Proces emisji protonu lub cząstki alfa prowadzi do wytworzenia jąder superciężkich, które są względnie bogatsze w neutrony, a więc znajdują się bliżej hipotetycznej wyspy stabilności.
      Wcześniej już zauważyliśmy, że bardzo istotne jest prawidłowe uwzględnienie zależności wyznaczanych przekrojów czynnych od momentu pędu jaki układ uzyskuje na początku procesu – dodaje dr Tomasz Cap z Zakładu Fizyki Jądrowej w NCBJ, współautor pracy. Tę zależność włączaliśmy do opisu na każdym etapie reakcji. Bardzo ważne było też wykorzystanie konsystentnego zestawu wejściowych danych takich jak masy jąder, bariery na rozszczepienie, poprawki powłokowe, deformacje jądrowe. Nasz zespół pracujący w NCBJ specjalizuje się w wykonywaniu takich obliczeń dla pierwiastków superciężkich, a wiarygodność uzyskiwanych w NCBJ wyników została potwierdzona wielokrotnie w sytuacjach, gdy możliwe jest porównanie z istniejącymi danymi doświadczalnymi. Można więc zakładać z dużym prawdopodobieństwem, że wyniki tych obliczeń, które są wiarygodne w obszarze jąder znanych, można stosować również dla nowych, niezbadanych jeszcze jąder, których prawdopodobieństwo wytworzenia chcieliśmy właśnie oszacować.
      Wyniki uzyskane przez autorów są intrygujące i spektakularne. Przewidują oni, że istnieje pewna wcale nieznikoma szansa wytworzenia w nowych eksperymentach dwóch nowych pierwiastków o Z=119 i Z=120. Szczególnie obiecująca wydaje się reakcja prowadzona na tarczy 249Bk (berkelium) z użyciem pocisku 50Ti (tytanium) - przekonuje prof. Kowal. Tylko o rząd wielkości mniej prawdopodobne powinno być wytworzenie pierwiastka Z=119 na tarczy 248Cm (kiur) z wanadem (51V) jako pociskiem. Ta reakcja jest właśnie testowana w laboratorium RIKEN w Japonii. Istnieje też ciekawa możliwość wytworzenia pierwiastka Z=120 w wyniku bombardowania kiuru-248 jadrami jądrami chromu-54.
      Oprócz perspektywy wytworzenia nowych pierwiastków bardzo optymistycznie wygląda sprawa wytworzenia nowych izotopów pierwiastków już znanych - uzupełnia dr Cap. Przewidujemy możliwość wytworzenia około dwudziestu takich nowych superciężkich nuklidów! Są to nowe izotopy copernicium (Z=112), nihonium (Z=113), flerovium (Z=114), moscovium (Z=115), livermorium (Z=116), a także tennessin (Z=117). To bardzo ekscytująca perspektywa.
      Pomimo sporego optymizmu co do perspektyw wytwarzania nowych pierwiastków oraz ich nowych izotopów, zawsze należy zachować pewną dozę ostrożności ze względu na skalę skomplikowania opisywanego zjawiska - podkreśla profesor Siwek-Wilczyńska. Po raz pierwszy w tego typu rachunkach udało się nam prostą acz sprytną metodą oszacować błąd teoretyczny podanych przewidywań. Pokazaliśmy, że przekroje czynne, a co za tym idzie prawdopodobieństwa wytworzenia nowych superciężkich jąder, nie mogą być wyznaczone z dokładnością większą niż rząd wielkości.
      Praca zatytułowana Exploring the production of new superheavy nuclei with proton and α-particle evaporation channels została opublikowana na początku maja tego roku w wiodącym czasopiśmie Amerykańskiego Towarzystwa Fizycznego Physical Review C.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lemury katta (Lemur catta) wyczuwają słabość w zapachu innych osobników. Później zachowują się wobec nich bardziej agresywnie.
      Nasze badanie pokazuje, że fizyczny uraz tłumi sygnaturę zapachową w sposób wyczuwalny dla pozostałych lemurów - opowiada prof. Christinie Drea z Duke University.
      Woń odgrywa ważną rolę w życiu lemurów katta. Obie płcie mają np. gruczoły zapachowe w okolicy odbytu. Dzięki temu mogą znakować swoje terytorium. Jak tłumaczą naukowcy, w takim "rozmazie" występuje nawet 200-300 związków. Na tej podstawie inne lemury ustalają, kto był w danym miejscu i czy jest gotowy do spółkowania.
      Zapach jest dość ostry i piżmowy - twierdzi Rachel Harris. To nie jest coś, czym chciałoby się zaciągnąć.
      Między 2007 a 2016 r. Amerykanie pobrali wymazy wydzieliny zapachowej 23 lemurów z Duke Lemur Center w Durham. Robili to podczas udzielania pomocy weterynaryjnej osobnikom, które odniosły rany i inne urazy. Działo się to zazwyczaj tego samego dnia, gdy doszło do wypadku lub krótko potem.
      Jeden z lemurów o imieniu Aracus został np. ranny podczas utarczki z młodszym rywalem. Po walce o samicę miał przeciętą łapę i policzek. Innym razem samiec Herodotus odniósł uraz palucha podczas pechowego lądowania.
      W ramach chromatografii gazowej połączonej ze spektrometrią mas naukowcy stwierdzili, że uraz zmieniał koktajl związków tworzących zapach. Okazało się, że po zranieniu liczba substancji w woni spadała aż o 10%. Zmiany były zbyt małe, by mógł je wychwycić ludzki nos, ale lemury doskonale to wyczuwały.
      Gdy lemury zraniły się w czasie sezonu rozrodczego, a więc wtedy, gdy walki są najczęstsze, wyciszeniu ulegała zwłaszcza piżmowa nuta woni.
      Pora rozrodu to okres nasilonego stresu - podkreśla Drea. Samce, które zostaną wtedy ranne, nie są w stanie podtrzymać swoich sygnałów zapachowych. Nie mogą pachnieć w charakterystyczny dla siebie sposób, bo sygnały zapachowe są kosztowne energetycznie.
      W eksperymentach behawioralnych wzięło udział 9 zdrowych samców. Prezentowano im 2 zapachy pobrane od danego lemura: jedną próbkę zdobywano, gdy był on ranny, drugą, gdy nic mu nie było. Dawcami były zarówno samce, jak i samice (do grona dawców zaliczały się też niektóre samce zapoznające się z próbkami). Zwierzętom prezentowano wyłącznie wonie nieznanych osobników. Akademicy kontrolowali sezonową zmienność zapachów i gdy było to możliwe, w pary łączono np. próbki pobrane w tych samych miesiącach różnych lat. Nie wykorzystywano zapachów pobranych od osobników leczonych antybiotykami, a także samic w ciąży, karmiących lub przyjmujących środki hormonalne.
      Podczas testów samce zwracały większą uwagę na próbki pobrane od innego samca, gdy był ranny niż na próbki pobrane od tego samego zwierzęcia bez urazu (były one obwąchiwane i znakowane częściej i w dłuższym okresie). Wonie zranionych osobników były znakowane za pomocą gruczołów nadgarstkowych; w ten sposób samce demonstrowały swoją dominację.
      Gdy łatwiej zdobyć przewagę, lemury zachowują się bardziej agresywnie. Nic więc dziwnego, że L. catta stale monitorują stan fizyczny swoich przeciwników i błyskawicznie reagują na okazję, gdy można się wspiąć wyżej w hierarchii społecznej - podsumowuje Harris.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Florida zaobserwowali, że zwiększenie ilości rtęci przyjmowanej przez ibisy białe wraz z pożywieniem, prowadzi do zmiany ich zachowań seksualnych. Szkodliwy związek czynił z nich homoseksualistów.
      Uczeni chcieli potwierdzić swoje przypuszczenia, że to zanieczyszczenie pokarmu przyjmowanego przez ptaki prowadzi do zmniejszonej liczby urodzin młodych. Jednak nie spodziewali się, odbywa się to poprzez zmianę zachowań seksualnych samców.
      Wiedzieliśmy, że rtęć negatywnie wpływa na hormony. Jednak w tych badaniach najbardziej zaniepokoiło nas to, ża nawet niewielkie ilości rtęci miały wpływ na hormony i dobieranie się w pary. To oznacza, że cała fauna może być dotknięta tym problemem - mówi profesor Peter Frederick, który kierował pięcioletnią pracą zespołu badawczego.
      Po raz pierwszy dowiedziono, że rtęć wpływa na zachowania seksualne ptaków i wykazano związek pomiędzy zanieczyszczeniem środowiska tym pierwiastkiem a zmniejszoną populacją młodych.
      Problem rtęci w środowisku Parku Narodowego Everglades ujawnił się na przełomie lat 80. i 90. ubiegłego wieku, gdy u wielu zwierząt zauważono podwyższony poziom tego pierwiastka. Władze zaczęły przeciwdziałać dalszej degradacji środowiska i pod koniec lat 90. poziom rtęci gwałtownie spadł. Jednocześnie zaobserwowano, że ibisy białe zaczęły niezwykle intensywnie się rozmnażać. Początkowo uważano, że lepsze warunki hydrogeologiczne skłoniły ptaki do posiadania większej liczby młodych, jednak szybko nabrano podejrzeń, że w grę wchodzi jeszcze inny czynnik. Profesor Frederic i doktoran Nilmini Jayasena rozpoczęli badania problemu rtęci. Odkryli, że do spadku jej poziomu w środowisku przyczyniła się lepsza polityka gospodarowania odpadami miejskimi i medycznymi oraz wyeliminowanie baterii zawierających rtęć.
      Uczeni wybudowali ptaszarnię i zamknęli w niej 160 młodych ibisów podzielonych na cztery grupy składające się z takiej samej liczby samców i samic. Ptakom podawano pożywienie, które zawierało różne ilości rtęci: mało, średnio i dużo. Grupa kontrolna otrzymywała pożywienie bez rtęci. Jednocześnie zadbano o to, by nawet grupa przyjmująca dużo rtęci nie otrzymywała jej więcej, niż wchłaniają dziko żyjące ptaki.
      Okazało się, że im więcej rtęci podawano ptakom, tym większy był odsetek par homoseksualnych. W grupie, która spożywała najwięcej rtęci aż 55% samców łączyło się z innymi samcami. W wyniku tego, w grupie przyjmującej dużo rtęci urodziło się o 35% mniej młodych niż w grupie kontrolnej.
      Wiele lat temu spędziłem tysiące godzin dokumentując zachowania ibisów w miejscu, które nie było zanieczyszczone rtęcią. Ani razu nie widziałem tam, by samce łączyły się z samcami - mówi profesor Frederic.
      Uczony przestrzega jednak przed zbyt pochopnym przekładaniem wyników jego badań na zachowania człowieka. Przypomina, że prowadzono już badania nad wpływem rtęci na ludzi i nie zauważono zmiany zachowań seksualnych. Po drugie, ludzka seksualność jest na tyle skomplikowane, iż jest mało prawdopodobne, by pojedynczy czynnik mógł ją zmienić. W końcu zwyczaje seksualne i fizjologia człowieka i ptaków są bardzo odmienne.
    • By KopalniaWiedzy.pl
      Ryby żyjące w pobliżu elektrowni węglowych zawierają mniej rtęci niż zwierzęta występujące na innych obszarach. Naukowcy uważają, że dzieje się tak przez wysokie stężenia selenu, które także nie są dobre, bo mogą zagrażać nawet śmiercią. Zatrucie selenem zwiększa np. ryzyko rozwoju nowotworów, o uszkodzeniach skóry nie wspominając.
      Odkryliśmy, że u ryb z jezior położonych co najmniej 30 km od elektrowni węglowych poziom rtęci jest ponad 3-krotnie wyższy niż u przedstawicieli tego samego gatunku z jezior zlokalizowanych w promieniu 10 km od zakładu – opowiada Dana Sackett, doktorantka z Uniwersytetu Stanowego Karoliny Północnej. Naukowcy byli bardzo zaskoczeni wynikami, ponieważ w skali globalnej elektrownie węglowe są jednym z wiodących emitentów atmosferycznych zanieczyszczeń rtęcią, a duże ilości Hg osadzają się w obrębie 10 km od kominów.
      Amerykanie badali bassy wielkogębowe, zwane inaczej okoniopstrągami (Micropterus salmoides), oraz samogłowy błękitne (Lepomis macrochirus) z 14 jezior słodkowodnych. Siedem znajdowało się w promieniu 10 km od elektrowni, a tyle samo leżało co najmniej 30 km od zakładu. Wybrano właśnie te gatunki ryb, ponieważ są one często łapane i zjadane przez wędkarzy, poza tym zajmują dwa różne miejsca w łańcuchu pokarmowym. Te pierwsze są tzw. drapieżnikami alfa ze szczytu szeregu organizmów i żywią się mniejszymi rybami. Jako że stężenie rtęci wzrasta w miarę przesuwania się na coraz wyższe ogniwa łańcucha troficznego, u okoniopstrągów powinno ono być wysokie. Samogłowy są od nich mniejsze i polegają głównie na bezkręgowcach, owadach, dlatego zespół Sackett spodziewał się, że w ich tkankach powinno się zakumulować mniej Hg.
      Naukowcy stwierdzili, że u obu gatunków poziom metalu ciężkiego wzrastał ponad 3-krotnie w jeziorach bardziej oddalonych od elektrowni. Oznacza to, że lokalizacja wpływa na ryby bez względu na miejsce zajmowane w łańcuchu pokarmowym. Ichtiolodzy sądzą, że niższe stężenia rtęci są skutkiem poziomu selenu. W tkankach pobranych od ryb zamieszkujących jeziora położone w pobliżu elektrowni węglowych stężenia selenu były 3 razy wyższe niż w próbkach z bardziej oddalonych zbiorników wodnych.
      Selen jest również emitowany przez elektrownie węglowe. Wykazuje antagonistyczne działanie wobec rtęci (dokładny mechanizm tego zjawiska pozostaje na razie nieznany). Wiadomo, że zapobiega akumulowaniu przez ryby wysokich stężeń rtęci, ale naukowcy nie wiedzą jak.
    • By KopalniaWiedzy.pl
      Rtęć jest jednym z najbardziej trujących pierwiastków. Niestety, wiele z używanych przez człowieka technologii powoduje skażanie środowiska, w tym środowiska wodnego, związkami rtęci. Jak się okazuje, mimo znacznie niższych stężeń rtęci w oceanach, jest ona tam znacznie bardziej niebezpieczna niż w wodzie słodkiej.
      Jednym z najpowszechniejszych związków rtęci, a przy tym wyjątkowo trującym jest metylortęć. Ten organiczny związek jest silną neurotoksyną, powodującą uszkodzenie między innymi nerek, mózgu i wątroby. Może przenikać do organizmu zarówno w pożywieniu, jak i poprzez układ oddechowi, czy przez skórę, ponadto kumuluje się w organizmie.
      Kumulacja związków rtęci w organizmach zwierząt jest najczęstszą przyczyną zatruć. Wg badań, na przykład w Stanach Zjednoczonych w organizmach aż 8% kobiet wykrywa się stężenie rtęci przekraczające bezpieczne normy. Jedną z przyczyn jest spożywanie ryb zatrutych tym metalem. Dlaczego jednak organizmy morskie zawierają większe ilości tego szkodliwego pierwiastka, skoro jego stężenie w wodzie morskiej jest znacznie mniejsze niż w słodkiej?
      Do tej pory istniejące technologie nie pozwalały na odkrycie przyczyny z powodu zbyt małej czułości i problemów z mierzeniem i wykrywaniem rtęci w morskiej wodzie. Teraz jednak zbadaniem zagadnienia zajęła się Heileen Hsu-Kim z Uniwersytetu Duke'a. Przyczyną, jak się okazało, jest sama słona woda.
      Metylortęć bardzo łatwo łączy się z materią organiczną: na przykład szczątkami obumarłych roślin, dlatego szybko trafia do łańcucha pokarmowego. Zagrożenie z jej strony jest jednak zmniejszane przez promieniowanie słoneczne, które powoduje rozkład związku. Dokładniej, rozpad następuje dzięki reaktywnym formom tlenu, które powstają w wodzie pod wpływem słońca. Tak się dzieje w wodzie słodkiej. Kiedy jednak metylortęć trafi do wody morskiej, ulega rozpadowi bardzo powoli. Jej cząstki bowiem łączą się chętnie z chlorkami, czyli z samą solą. Takie połączenie jest bardzo odporne i nie ulega rozkładowi pod wpływem promieniowania.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...