Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Najnowsze badania wykazały, że liście drzew potrafią utrzymywać niemal stałą temperaturę niezależnie od tego, czy rosną w Meksyku czy na północy Kanady. Naukowcy przyjrzeli się 39 gatunkom północnoamerykańskich drzew żyjących na obszarach rozciągających się na przestrzeni 50 stopni szerokości geograficznej. Okazało się, że ich liście niezależnie od pogody utrzymują temperaturę około 21 stopni Celsjusza, co pozwala im na wydajną fotosyntezę.

Nowe odkrycie może zaważyć na metodach modelowania zmian klimatycznych w przeszłości i przyszłości, które bazują na obserwacji pierścieni przyrostów rocznych w drzewach.

Naukowcy wnioskują o klimacie z przeszłości na podstawie obserwacji izotopów tlenu w pierścieniach. Tlen atmosferyczny składa się z dwóch izotopów: 16O i 18O. Temperatura wpływa na ich relatywną zawartość w drewnie, tak więc na tej podstawie można wysuwać wnioski co do przeszłych temperatur. Ponadto wpływ ma też wilgotność. Lżejszy z izotopów, 16O, łatwiej odparowuje, a więc większa koncentracja 18O świadczy o mniejszej wilgotności powietrza.
Tak więc uczeni obserwując zmiany koncentracji wspomnianych izotopów w drzewie określali klimat nawet o miliony lat wstecz.

Brent Helliker z University of Pennsylvania mówi, że ta technika zawsze wydawała mu się niewłaściwa. Zakładała bowiem, że temperatura korony drzewa była taka sama, jak temperatura otoczenia. Jako ekofizjolog roślin wiem, że taka sytuacja jest mało prawdopodobna - dodaje. Tym bardziej, że przebieg procesu fotosyntezy jest wrażliwy na temperaturę, a więc rośliny muszą w jakiś sposób chronić się przed kaprysami pogody. Zbyt niska temperatura może znacząco zwolnić proces fotosyntezy i roślina nie otrzyma niezbędnych składników odżywczych, a zbyt wysoka uszkadza błony komórkowe. Chyba nikogo nie zdziwi przypuszczenie, że kanadyjski niedźwiedź polarny będzie miał taką samą temperaturę ciała, co niedźwiedź na Florydzie. Z drugiej jednak strony, stwierdzenie, że kanadyjski świerk czarny może mieć taką samą temperaturę jak sosna na Karaibach, wywołuje zdziwienie. Drzewa nie są przecież endotermiczne. - mówi profesor Helliker.

Uczony wraz z doktor Suzanną Richter postanowili użyć metody oznaczania izotopów tlenu do zbadania współczesnych drzew, a następnie porównali uzyskane dane z raportami pogodowymi. Oczywiście temperatura liści zmienia się w ciągu dnia, jednak ilość izotopów tlenu powinna wyznaczać średnią temperaturę liści gdy zmieniają one pobrany dwutlenek węgla w cukry. Badania naukowców wykazały, że średnia temperatura liści wynosi 21 stopni Celsjusza, niezależnie od szerokości geograficznej, w jakiej rośnie drzewo.

Drzewa stosują różne strategie utrzymania temperatury. W cieplejszych regionach zmieniają kąt nachylenia liści tak, by padało na nie mniej słońca, zwiększają powierzchnię chłodzącą poprzez rosnące na liściach włoski czy też "pocą się", poświęcając część wody na chłodzenie. W regionach zimnych zbliżają liście do siebie tak, by wzajemnie chroniły się przed utratą ciepła.

Badania Hellikera i Richter pokazują więc, że wnioskując o zmianach klimatycznych na podstawie pierścieni wzrostu, należy spojrzeć na roślinę jako na całość, a nie tylko na jej część.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Teraz należałoby wykonać badanie sprawdzające - poprzez przykładanie termometrów do liści.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość tymeknafali

Raz jeszcze powtórzę... mnie wiemy jeszcze niż się nam wydaje.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Okazało się, że ich liście niezależnie od pogody utrzymują temperaturę około 21 stopni Celsjusza, co pozwala im na wydajną fotosyntezę.

 

Ludzie też lubią owe 21 st. stąd ocieplanie klimatu położy najpierw rośliny (wyglądnij na trawnik) 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość tymeknafali

A gdzie tam... palmy będą wszędzie rosły  :-*

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zdaniem naukowców z University of Cambridge, wpływ wulkanów na klimat jest mocno niedoszacowany. Na przykład w najnowszym raporcie IPCC założono, że aktywność wulkaniczna w latach 2015–2100 będzie taka sama, jak w latach 1850–2014. Przewidywania dotyczące wpływu wulkanów na klimat opierają się głównie na badaniach rdzeni lodowych, ale niewielkie erupcje są zbyt małe, by pozostawiły ślad w rdzeniach lodowych, mówi doktorantka May Chim. Duże erupcje, których wpływ na klimat możemy śledzić właśnie w rdzeniach, mają miejsce najwyżej kilka razy w ciągu stulecia. Tymczasem do małych erupcji dochodzi bez przerwy, więc przewidywanie ich wpływu na podstawie rdzeni lodowych prowadzi do mocnego niedoszacowania.
      Z badań przeprowadzonych przez Chim i jej zespół wynika, że modele klimatyczne nawet 4-krotnie niedoszacowują chłodzącego wpływu małych erupcji wulkanicznych. Podczas erupcji wulkany wyrzucają do atmosfery związki siarki, które gdy dostaną się do górnych jej partii, tworzą aerozole odbijające światło słoneczne z powrotem w przestrzeń kosmiczną. Gdy mamy do czynienia z tak dużą erupcją jak wybuch Mount Pinatubo w 1991 roku, emisja związków siarki jest tak duża, że spadają średnie temperatury na całym świecie. Takie erupcje zdarzają się rzadko. W porównaniu z gazami cieplarnianymi emitowanymi przez ludzi, wpływ wulkanów na klimat jest niewielki, jednak ważne jest, byśmy dokładnie uwzględnili je w modelach klimatycznych, by móc przewidzieć zmiany temperatur w przyszłości, mówi Chim.
      Chim wraz z naukowcami z University of Exeter, Niemieckiej Agencji Kosmicznej, UK Met Office i innych instytucji opracowali 1000 różnych scenariuszy przyszłej aktywności wulkanicznej, a następnie sprawdzali, co przy każdym z nich będzie działo się z klimatem. Z analiz wynika, że wpływ wulkanów na temperatury, poziom oceanów i zasięg lodu pływającego jest prawdopodobnie niedoszacowany, gdyż nie bierze pod uwagę najbardziej prawdopodobnych poziomów aktywności wulkanicznej.
      Analiza średniego scenariusza wykazała, że wpływ wulkanów na wymuszenie radiacyjne, czyli zmianę bilansu promieniowania w atmosferze związana z zaburzeniem w systemie klimatycznym, jest niedoszacowana nawet o 50%. Zauważyliśmy, że małe erupcje są odpowiedzialny za połowę wymuszenia radiacyjnego generowanego przez wulkany. Indywidualne erupcje tego typu mogą mieć niemal niezauważalny wpływ, ale ich wpływ łączny jest duży, dodaje Chim.
      Oczywiście erupcje wulkaniczne nie uchronią nas przed ociepleniem. Aerozole wulkaniczne pozostają w górnych warstwach atomsfery przez rok czy dwa, natomiast dwutlenek węgla krąży w atmosferze znacznie dłużej. Nawet jeśli miałby miejsce okres wyjątkowo dużej aktywności wulkanicznej, nie powstrzyma to globalnego ocieplenia. To jak przepływająca chmura w gorący słoneczny dzień, jej wpływ chłodzący jest przejściowy, wyjaśnia uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz czwarty z rzędu światowe oceany pobiły rekordy ciepła. Kilkunastu naukowców z Chin, USA, Nowej Zelandii, Włoch opublikowało raport, z którego dowiadujemy się, że w 2022 roku światowe oceany – pod względem zawartego w nich ciepła – były najcieplejsze w historii i przekroczyły rekordowe maksimum z roku 2021. Poprzednie rekordy ciepła padały w 2021, 2020 i 2019 roku. Oceany pochłaniają nawet do 90% nadmiarowego ciepła zawartego w atmosferze, a jako że atmosfera jest coraz bardziej rozgrzana, coraz więcej ciepła trafia do oceanów.
      Lijing Cheng z Chińskiej Akademii Nauk, który stał na czele grupy badawczej, podkreślił, że od roku 1958, kiedy to zaczęto wykonywać wiarygodne pomiary temperatury oceanów, każda dekada była cieplejsza niż poprzednia, a ocieplenie przyspiesza. Od końca lat 80. tempo, w jakim do oceanów trafia dodatkowa energia, zwiększyło się nawet 4-krotnie.
      Z raportu dowiadujemy się, że niektóre obszary ocieplają się szybciej, niż pozostałe. Swoje własne rekordy pobiły Północny Pacyfik, Północny Atlantyk, Morze Śródziemne i Ocean Południowy. Co gorsza, naukowcy obserwują coraz większą stratyfikację oceanów, co oznacza, że wody ciepłe i zimne nie mieszają się tak łatwo, jak w przeszłości. Przez większą stratyfikację może pojawić się problem z transportem ciepła, tlenu i składników odżywczych w kolumnie wody, co zagraża ekosystemom morskim. Ponadto zamknięcie większej ilości ciepła w górnej części oceanów może dodatkowo ogrzać atmosferę. Kolejnym problemem jest wzrost poziomu wód oceanicznych. Jest on powodowany nie tylko topnieniem lodu, ale również zwiększaniem objętości wody wraz ze wzrostem jej temperatury.
      Ogrzewające się oceany przyczyniają się też do zmian wzorców pogodowych, napędzają cyklony i huragany. Musimy spodziewać się coraz bardziej gwałtownych zjawisk pogodowych i związanych z tym kosztów. Amerykańska Administracja Oceaniczna i Atmosferyczna prowadzi m.in. statystyki dotyczące gwałtownych zjawisk klimatycznych i pogodowych, z których każde przyniosło USA straty przekraczające miliard dolarów. Wyraźnie widać, że liczba takich zjawisk rośnie, a koszty są coraz większe. W latach 1980–1989 średnia liczba takich zjawisk to 3,1/rok, a straty to 20,5 miliarda USD/rok. Dla lat 1990–1999 było to już 5,5/rok, a straty wyniosły 31,4 miliarda USD rocznie. W ubiegłym roku zanotowano zaś 18 takich zjawisk, a straty sięgnęły 165 miliardów dolarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na łamach Nature opublikowano artykuł, którego autorzy wykazali istnienie związku pomiędzy ewolucją człowieka a naturalnymi zmianami klimatu powodowanymi przez zjawiska astronomiczne. Od dawna podejrzewano, że klimat miał wpływ na ewolucję rodzaju Homo, jednak związek ten trudno udowodnić, gdyż w pobliżu miejsc występowania ludzkich skamieniałości rzadko można znaleźć wystarczająco dużo danych, by opisać klimatu w czasie, gdy ludzie ci żyli.
      Dlatego też naukowcy z Korei Południowej, Niemiec, Szwajcarii i Włoch wykorzystali model komputerowy opisujący klimat na Ziemi na przestrzeni ostatnich 2 milionów lat. To pozwoliło na określenie klimatu, jaki panował w miejscu i czasie, w którym żyli badani przez naukowców ludzi. W ten sposób opisano warunki klimatyczne preferowane przez poszczególne gatunki homininów. Stalo się to punktem wyjścia do stworzenia ewoluującej w czasie mapy z obszarami potencjalnie zamieszkanymi przez naszych przodków.
      Nawet jeśli różne grupy archaicznych ludzi preferowały różny klimat, to wszystkie one reagowały na zmiany klimatu wywoływane takimi zjawiskami astronomicznymi jak zmiana nachylenia ekliptyki, ekscentryczność orbity czy precesję. Zmiany takie mają miejsce w okresach od 21 tysięcy do 400 tysięcy lat, mówi Axel Timmermann, główny autor badań i dyrektor Centrum Fizyki Klimatu na Uniwersytecie Narodowym Pusan w Korei Południowej.
      Uczeni, żeby sprawdzić, czy związek pomiędzy zmianami klimatu a ewolucją rzeczywiście istnieje, powtórzyli swoją analizę, ale zmieniali dane dotyczące datowania poszczególnych skamieniałości, przypadkowo je między sobą podmieniając. Jeśli zmiany klimatu nie miały związku z ewolucją, to takie podmienienie danych nie powinno wpłynąć na wyniki analizy. Okazało się jednak, że wyniki analizy dla danych prawdziwych i przypadkowo wymieszanych zasadniczo się między sobą różniły. Wyraźnie widoczne były różnice we wzorcach wyboru habitatów przez Homo sapiens, Homo neanderthalensis i Homo haidelbergensis. Wyniki te pokazują, że co najmniej na przestrzeni ostatnich 500 000 lat zmiany klimatu, w tym okresy zlodowaceń, odgrywały kluczową rolę w wyborze habitatu przez te gatunki, co z kolei wpłynęło na miejsca znalezienia skamieniałości, mówi Timmermann.
      Postanowiliśmy też poznać odpowiedź na pytanie, czy habitaty różnych gatunków człowieka nakładały się na siebie w czasie i przestrzeni, dodaje profesor Pasquale Raia z Università di Napoli Federico II w Neapolu. Na podstawie tak uzyskanych danych dotyczących nakładających się habitatów, zrekonstruowano drzewo ewolucyjne człowieka. Wynika z niego, że neandertalczycy i denisowianie wyodrębnili się z eurazjatyckiego kladu H. heidelbergensis około 500–400 tysięcy lat temu, a H. sapiens pochodzi z południowoafrykańskiej populacji H. heidelbergensis, od której oddzielił się około 300 tysięcy lat temu.
      Nasza bazująca na klimacie rekonstrukcja drzewa ewolucyjnego człowieka jest więc dość podobna do rekonstrukcji wykonanej w ostatnim czasie na podstawie danych genetycznych lub danych morfologicznych. Dzięki temu możemy zaufać uzyskanym przez nas wynikom, cieszy się doktor Jiaoyan Ruan z Korei Południowej.
      Niezwykłej rekonstrukcji dokonano za pomocą południowokoreańskiego superkomputera Aleph, który pracował nieprzerwanie przez 6 miesięcy, by stworzyć największą z dotychczasowych symulacji przeszłego klimatu. Model obejmuje aż 500 terabajtów danych. To pierwsza ciągła symulacja ziemskiego klimatu obejmująca ostatnie 2 miliony lat i uwzględniająca pojawiania się i znikanie pokryw lodowych czy zmiany w stężeniach gazów cieplarnianych. Dotychczas paleoantropolodzy nie używali tak rozległych modeli paleoklimatycznych. Nasza praca pokazuje, jak przydatne są to narzędzia, dodaje profesor Christoph Zollikofer z Uniwersytetu w Zurichu.
      Uczeni mówią, ze w swoich danych zauważyli interesujący wzorzec dotyczący pożywienia. Wcześni afrykańscy hominini żyjący pomiędzy 2 a 1 milionem lat temu preferowali stabilne warunki klimatyczne, co ograniczało ich do wąskich habitatów. Przed około 800 tysiącami lat doszło do zmiany klimatu, w wyniku której grupa znana pod ogólnym terminem H. heidelbergensis dostosowała się do szerszego spektrum źródeł pożywienia, dzięki czemu mogli wędrować po całym globie, docierając do odległych regionów Europy i Azji, dodaje Elke Zeller z Korei. Nasze badania pokazują, że klimat odgrywał kluczową rolę w ewolucji rodzaju Homo. Jesteśmy, kim jesteśmy, gdyż przez wiele tysiącleci udało nam się dostosowywać do powolnych zmian klimatu, wyjaśnia profesor Timmermann.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wydawałoby się, że zdolność do wytwarzania nasion, owoców czy orzechów będzie rosła wraz ze wzrostem drzew. Badania prowadzone przez naukowców z 13 krajów z całego świata nie potwierdzają jednak tej hipotezy.
      Naukowcy zbadali prawie 600 gatunków drzew. Okazało się, że u około 80 proc. z nich płodność osiągała wartość szczytową, gdy drzewa były umiarkowanej wielkości. Potem zaczynała spadać. Pozostałe 20 proc. gatunków niekoniecznie posiada sekretny „eliksir młodości” – zaznaczają naukowcy. I dodają, że gatunki te prawdopodobnie również doświadczają spadku płodności w pewnym wieku. Jednak, aby to stwierdzić, nie ma na razie wystarczająco wielu danych na temat starszych, większych drzew z tej grupy gatunków.
      Publikacja autorstwa 59 badaczy z 13 krajów (Chile, Włoch, Kanady, Polski, Francji, Hiszpanii, Szwajcarii, Japonii, Słowenii, Niemiec, Panamy, Portoryko i USA) ukazała się niedawno na łamach Proceedings of the National Academy of Sciences of the United States of America. Jednymi z autorów są dr hab. Michał Bogdziewicz z Wydziału Biologii UAM w Poznaniu, dr hab Magdalena Żywiec i Łukasz Piechnik z Instytutu Botaniki im. Władysława Szafera PAN w Krakowie oraz dr Mateusz Ledwon z Instytutu Systematyki i Ewolucji Zwierząt PAN w Krakowie.
      Owoce i orzechy drzew stanowią 3 proc. diety człowieka. Są również ważne dla wielu ptaków i małych ssaków, a nasiona drzew są niezbędne do regeneracji lasów. Aby skutecznie zarządzać tymi zasobami i je chronić, musimy wiedzieć, czy prawdopodobne jest wystąpienie spadku płodności oraz w jakim rozmiarze lub wieku może się taki spadek pojawić – mówi kierujący badaniami, dr Tong Qiu z Nicholas School of the Environment na Duke University (USA), cytowany w informacji prasowej związanej z publikacją, przesłanej PAP przez UAM.
      Odpowiedź na to pozornie proste pytanie pozostawała jednak dotychczas w sferze domysłów.
      Z jednej strony jest niezwykle nieprawdopodobne, aby płodność drzew wzrastała w nieskończoność wraz z wiekiem i wielkością, biorąc pod uwagę to, co wiemy o starzeniu się lub pogarszaniu się funkcji fizjologicznych związanym z wiekiem u ludzi i innych organizmów wielokomórkowych – zauważa James S. Clark, profesor nauk o środowisku z Nicholas School of the Environment na Duke University w Durham (USA).
      Z drugiej strony, ściśle mówiąc, nie było jednoznacznych dowodów, aby to obalić – zauważa dr hab. Michał Bogdziewicz, biolog z Uniwersytetu im. Adama Mickiewicza w Poznaniu, cytowany w informacji prasowej.
      Clark zwraca uwagę, że wiele upraw drzew owocowych jest wymienianych co dwie lub trzy dekady, i że istnieją trudności w monitorowaniu produkcji nasion na drzewach rosnących poza uprawą. Właśnie dlatego większość dotychczasowych badań dotyczących płodności drzew opierała się na zestawach danych, które zawierały głównie młodsze drzewa, które są wciąż zbyt małe lub średnie. Nie mając wystarczających danych na temat produkcji nasion na późniejszych etapach rozwoju osobników naukowcy szacowali te liczby na podstawie średnich z wcześniejszych etapów.
      Problem polega na tym, że drzewa niekoniecznie produkują regularną liczbę nasion każdego roku, niezależnie od wielkości i wieku. Mogą występować ogromne różnice z roku na rok i pomiędzy drzewami – od zera nasion w jednym roku do milionów w następnym. Tak więc wykorzystanie średnich obserwacji z przeszłości do prognozowania przyszłej produkcji może prowadzić do sporych błędów – podkreślają naukowcy.
      Nowe badanie – jak informują jego autorzy – pozwala uniknąć tego problemu, gdyż zawiera syntezę danych dotyczących produkcji nasion dla 585 670 drzew z 597 gatunków monitorowanych za pośrednictwem sieci MASTIF (Masting Inference and Forecasting). Michał Bogdziewicz z UAM jest jednym z członków tej dynamicznie rozwijającej się grupy badawczej. W ramach stypendium badawczego Bekkera finansowanego przez NAWA przez najbliższe dwa lata będzie pracował w laboratorium Clarka - informuje UAM.
      Globalna baza danych stworzona przez sieć zawiera szczegółowe dane, obejmujące często wiele dziesięcioleci wstecz, a dotyczące rocznej produkcji nasion przez drzewa rosnące w ponad 500 różnych miejscach w Ameryce Północnej, Ameryce Południowej, Azji, Europie i Afryce. Nowe obserwacje można łatwo do bazy danych. Może to zrobić każdy.
      Dostęp do tak ogromnego repozytorium surowych danych umożliwił Qiu, Clarkowi i ich współpracownikom opracowanie skalibrowanego modelu, aby i dokładnie obliczyć długoterminową płodność drzew.
      Dla większości badanych przez nas gatunków, w tym ludzi, jedną z najbardziej podstawowych zmiennych, które mierzymy, jest wskaźnik urodzeń. Dla zwierząt często jest to proste – liczysz jaja w gnieździe lub szczenięta w miocie. Ale kiedy chodzi o drzewa, jest to trudniejsze. Bardzo trudno jest bezpośrednio obserwować, ile nasion jest produkowanych – wyobraźmy sobie liczenie wszystkich żołędzi na 100 letnim buku. Jak pokazuje to badanie, przybliżanie również nie działa. Potrzebny jest inny sposób. Nasz model może rozwiązać ten problem – powiedział Clark.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wyjście z łóżka w ciemny zimowy poranek jest dla wielu nie lada wyzwaniem. Nie ma jednak co robić sobie z tego powodu wyrzutów. Neurobiolodzy z Northwestern University odkryli właśnie mechanizm wskazujący, że zachowanie takie ma biologiczne podstawy.
      Naukowcy zauważyli otóż, że muszki owocówki posiadają rodzaj termometru, który przekazuje informacje o temperaturze z czułków zwierzęcia do bardziej rozwiniętych części mózgu. Wykazali też, że gdy jest ciemno i zimno sygnały te tłumią działanie neuronów odpowiedzialnych za przebudzenie się i aktywność, a tłumienie to jest najsilniejsze o poranku.
      To pomaga wyjaśnić dlaczego, zarówno w przypadku muszek owocówek jak i ludzi, tak trudno jest obudzić się w zimie. Badając zachowanie muszek możemy lepiej zrozumieć jak i dlaczego temperatury są tak ważne dla regulacji snu, mówi profesor Marco Gallio z Winberg College of Arts and Sciences.
      W artykule opublikowanym na łamach Current Biology autorzy badań jako pierwsi opisali receptory „absolutnego zimna” znajdujące się w czułkach muszki. Reagują one wyłącznie na temperatury poniżej strefy komfortu termicznego zwierzęcia, czyli poniżej 25 stopni Celsjusza. Po zidentyfikowaniu tych neuronów uczeni zbadali ich interakcję z mózgiem. Okazało się, że głównym odbiorcą przesyłanych przez nie informacji jest mała grupa neuronów mózgu, która jest częścią większego obszaru odpowiedzialnego za kontrolę rytmu aktywności i snu. Gdy obecne w czułkach receptory zimna zostają aktywowane, wówczas komórki w mózgu, które zwykle są aktywowane przez światło, pozostają uśpione.
      Odczuwanie temperatury to jeden z najważniejszych stymulantów. Podstawy jego działania, jakie znaleźliśmy u owocówki, mogą być identyczne u ludzi. Niezależnie bowiem od tego, czy mamy do czynienia z człowiekiem czy z muszką, narządy zmysłów mają do rozwiązania te same problemy i często jest to robione w ten sam sposób, dodaje Gallio.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...