Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Niezwykły pulsar intryguje naukowców

Recommended Posts

Australijscy astronomowie, korzystając z radioteleskopu w Arecibo, odkryli w odległości 20 000 lat świetlnych od Ziemi pulsar oznaczony jako J1903+0327. Nie byłoby w tym nic dziwnego, gdyby nie fakt, że pulsar zachowuje się inaczej niż wszystkie inne znane nam obiekty tego typu i nie pasuje do obowiązujących teorii na temat powstawania takich gwiazd.

Pulsary to pewien rzadki typ gwiazdy neutronowej. Powstają, gdy masywna gwiazda eksploduje tworząc supernową. Pulsary charakteryzują się bardzo silnym polem magnetycznym oraz idealnie okrągłą orbitą wokół towarzyszącej gwiazdy.

Inną cechą charakterystyczną pulsarów jest ich regularny obrót wokół własnej osi. Zwykle pulsary obracają się kilkukrotnie w ciągu sekundy. Jednak J1903+0327 jest bardzo szybki. Wykonuje on 465 obrotów na sekundę i jest 5. najszybszym znanym pulsarem w naszej galaktyce. Astronomowie uważają, że takie szybki pulsary powstają jako zwykłe, wolniejsze. Jeśli jednak pulsarowi towarzyszy inna gwiazda, którą ten okrąża, to w pewnym momencie materia z towarzyszącej gwiazdy zaczyna przesuwać się do pulsara, powodując jego przyspieszenie. To wyjaśnia istnienie bardzo szybkich pulsarów. Z tym przesuwaniem się materii związane jest jednak jeszcze jedno zjawisko - orbita pulsaru jest niemal idealnym okręgiem.

Jak zauważa jeden z odkrywców nowego pulsara, dr Champion, taki kształt orbity to jeden z najlepszych dowodów na potwierdzenie teorii o przyspieszaniu pulsara przez materię towarzyszącej gwiazdy. Jednak J1903+0327 jest zupełnie inny. Jego orbita jest eliptyczna. Rodzi się więc pytanie: W jaki sposób powstał? - mówi Champion.

Astronomowie mają już kilka pomysłów, które mogą wyjaśnić tajemnicę pulsara. Jeden z nich mówi, że J1903+0327 był częścią układu składającego się z trzech gwiazd. Został przyspieszony przez jedną z dwóch pozostałych, wokół której rzeczywiście krążył po okręgu. Gwiazda ta następnie albo została "wyrzucona" z układu, albo pulsar wchłonął całą jej materię.

Według innej teorii, pulsar powstał w gromadzie kulistej, został tam przyspieszony przez swojego pierwotnego towarzysza, a następnie przemieścił się.

Inną niezwykłą cechą J1903+0327 jest jego duża masa. Jest on o 74% cięższy od Słońca. Jak mówi doktor Champion: Tak masywny pulsar może obalić kilka dotychczasowych teorii dotyczących stanu gęsto upakowanej materii w pulsarach.

Share this post


Link to post
Share on other sites

Ciekawe jakie wyjaśnienie ma na to elektryczna kosmologia, ja pomału zaczynam w nią wierzyć, a te wszystkie teorie przypadkowego przejścia z układu trzech gwiazd do dwóch gwiazd, wyssaniu masy i tym podobne są trochę wyssane z palca, wszystko próbuje się wyjaśniać dziwnymi zbiegami okoliczności, teoria powinna być spójna i prosta a nie rozbudowywana w miarę pojawiania się nowych wyjątków.

 

Dla uściślenia o jakiej elektrycznej kosmologii mówię :

 

http://www.joemonster.org/filmy/8024/Thunderbolts-of-the-Gods-Pioruny-Bogow-(polskie-napisy)

Share this post


Link to post
Share on other sites

Nas natomiast intryguje rzeczywisty stan wiedzy naukowców, specjalnie tych zajmujących się oznaczaniem i klasyfikacją danych w teoriach nieweryfikowalnych.

UNESCO-CPS®

Odległości interastrograwitacyjne są szacowane według opinii eksperta [źródło:Received: from akh159.rev.netart.pl (HELO astronomia.serwery.pl) ([85.128.138.159])

by ironport.mm.pl with ESMTP; 2008 astronomia.pl, Krzysztof Czart] w oparciu metody paralaksy trygonometrycznej.

 

W mojej opinii są niedoszacowane.

Share this post


Link to post
Share on other sites

teoretycznie pulsar o takiej masie nie powinien istnieć (musiały by ulec zniszczeniu odległości subatomowe-że niby co,elektrony połączone z protonami?)

jeśli to coś(no bo to nie pulsar) istnieje,to albo cud,albo za mało wiemy.

Share this post


Link to post
Share on other sites
teoretycznie pulsar o takiej masie nie powinien istnieć

 

 

To co nazywają pulsarem to przeskakujący łuk elektryczny. 8)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Po przeprowadzeniu inspekcji, w wyniku której uznano, że napraw w Arecibo Observatory nie uda się wykonać bez narażania na niebezpieczeństwo robotników oraz pracowników ośrodka, Narodowa Fundacja Nauki Stanów Zjednoczonych rozpoczęła program likwidacji 305-metrowego teleskopu, który przez 57 lat służył jako jeden z głównych światowych ośrodków radioastronomii, badań systemów planetarnych, Układu Słonecznego i badań przestrzeni kosmicznej, czytamy w oświadczeniu opublikowanym przez US National Science Foundation.
      W sierpniu bieżącego roku informowaliśmy o zerwaniu się jednego z kabli podtrzymujących konstrukcję odbiornika teleskopu. Przed 2 tygodniami doszło do zerwania się kolejnego kabla.
      NSF już w sierpniu zleciła przyjrzenie się sprawie kilku niezależnym firmom inżynieryjnym. Specjaliści doszli do wniosku, że cała struktura teleskopu jest narażona na katastrofę, kable mogą jej dłużej nie utrzymać. Uznano też, że prace mające na celu naprawienie teleskopu wiązałyby się z ryzykiem utraty życia przez prowadzących je robotników. Co więcej, analizy wykazały, że nawet jeśli teleskop zostałby naprawiony, to i tak najprawdopodobniej trzeba będzie mierzyć się z długoterminowymi problemami związanymi ze stabilnością struktury.
      Już po sierpniowym wypadku NSF zezwoliła University of Central Florida (UCF), który zarządza Obserwatorium Arecibo, na podjęcie wszelkich niezbędnych kroków, z zastrzeżeniem, że najważniejsze jest bezpieczeństwo robotników, pracowników oraz odwiedzających. UCF szybko przystąpił do działania. Firmy inżynieryjne dokonały oceny sytuacji i rozpoczęto przygotowania do awaryjnych prac mających na celu ustabilizowanie struktury. W momencie gdy czekano na dostawę dwóch nowych kabli podtrzymujących strukturę teleskopu oraz dwóch tymczasowych kabli pomocniczych, doszło do zerwania się kolejnego kabla. Zaskoczyło to specjalistów, gdyż – bazując na obliczeniach naprężeń, jakim był kabel poddany – sytuacja taka nie powinna się wydarzyć. Inżynierowie uznali, że najwyraźniej cała konstrukcja, pozostałe kable, są słabsze niż sądzono.
      Prace nad rozbiórką teleskopu będą skupiały się na jego czaszy oraz na zabezpieczeniu pozostałej infrastruktury na wypadek kolejnej katastrofy budowlanej. Plan wyłączenia Arecibo zakłada pozostawienie jak największej części infrastruktury, tak by mogła ona służyć przyszłym pracom badawczym i edukacyjnym. Pierwszymi krokami tych prac będzie przeniesienie wyposażenia, które ma zostać zachowane, w bezpieczne miejsce oraz obfotografowanie struktury teleskopu w wysokiej rozdzielczości za pomocą dronów. Ma to pomóc w zaplanowaniu prac rozbiórkowych.
      Gdy teleskop zostanie rozebrany, ponownie prace badawcze podejmą takie jednostki jak Arecibo Observatory LIDAR czy położona poza obserwatorium jednostka Culebra, która analizuje pokrywę chmur i dane nt. opadów. Otwarte zostanie też centrum dla zwiedzających. Nadal prowadzone będą działania związane z przechowywaniem i analizą dotychczas zebranych danych. W 2019 roku UCF podpisał umowę z Microsoftem, na podstawie której zwiększono możliwości przechowywania i analizy danych. Obecnie trwają prace nad migracją danych z serwerów na terenie obserwatorium na serwery zewnętrzne.
      Radioteleskop w Arecibo składa się z czaszy o średnicy 305 metrów oraz z ważącej 900 ton platformy z instrumentami naukowymi, która zawieszona jest na wysokości około 140 metrów nad czaszą. Platforma wisi na kablach umocowanych do trzech betonowych wież. Gdy na początku bieżącego miesiąca zerwał się drugi z kabli, było to sporym zaskoczeniem dla specjalistów. Jego obciążenie wynosiło bowiem zaledwie 60% minimalnego obciążenia grożącego zerwaniem. Badanie głównych kabli, które pochodziły z czasów budowy teleskopu ujawniło pojawienie się w nich nowych pęknięć. Okazało się też, że dodatkowe kable, które zamontowano w latach 90. gdy zwiększano ciężar platformy zawieszonej nad teleskopem, również nie sprawują się tak, jak należy.
      Firma Thomton Tomasetti, wynajęta przez UCF do oceny struktury radioteleskopu, uznała, że prace na tym obiekcie są niebezpieczne. Tym bardziej, że nie można byłoby nawet przeprowadzić testów obciążeniowych pozostałych kabli bez ryzyka zawalenia się całej struktury. W związku tym firm zaleciła kontrolowane wyburzenie w celu uniknięcia niespodziewanego zawalenia się teleskopu.
      UCF wynajął jeszcze dwie dodatkowe firmy. Jedna z nich zaleciła natychmiastowe prace nad ustabilizowaniem struktury. Druga, po zapoznaniu się z modelem wykorzystanym przez Thomton Tomasetti uznała, że nie jest możliwe bezpieczne przeprowadzenie oceny stabilności i stwierdziła, że nikt nie powinien być dopuszczony do platform i wież teleskopu.
      Po otrzymaniu tych opinii UCF zleciła ich analizie kolejnej firmie inżynieryjnej oraz Korpusowi Inżynierów US Army. Firma zgodziła się ze stanowiskiem Thomton Tomasetti, a US Army Corps of Engineers zarekomendował wykonanie dodatkowej dokumentacji fotograficznej obserwatorium oraz szczegółowych badań niedawno zerwanego kabla.
      Biorąc pod uwagę fakt, że wszelkie prace nad ustabilizowaniem lub naprawieniem struktury wymagałyby obecności robotników na jej terenie bądź w pobliżu oraz stopień niepewności związany z wytrzymałością kabli i wielkie siły, z jakimi mamy tu do czynienia, NSF zaakceptowała propozycję rozpoczęcia przygotowań do kontrolowanej likwidacji 305-metrowego teleskopu, czytamy w oświadczeniu NSF.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gwiazdy neutronowe to najbardziej gęste – nie licząc czarnych dziur – obiekty we wszechświecie. Centymetr sześcienny ich materii waży miliony ton. Naukowcy wciąż je badają próbując znaleźć odpowiedzi na wiele pytań. Chcieliby np. dowiedzieć się, jak wyglądają neutrony ściśnięte tak potężnymi siłami czy gdzie leży granica pojawienia się czarnej dziury.
      Naukowcy używający Green Bank Telescope donieśli właśnie o odkryciu najbardziej masywnej gwiazdy neutronowej. Pulsar J0740+6620 ma masę 2,17 większą od masy Słońca, a całość jest upakowana w kuli o średnicy zaledwie 30 kilometrów. To bardzo ważne odkrycie, gdyż z danych dostarczonych przez detektor LIGO, który zarejestrował fale grawitacyjne pochodzące ze zderzenia dwóch gwiazd neutronowych wynika, iż 2,17 masy Słońca to bardzo blisko granicy powstania czarnej dziury.
      Gwiazdy neutronowe są tajemnicze i fascynujące. Te obiekty wielkości miasta przypominają ogromne jądro atomowe. Są tak masywne, że mają dziwaczne właściwości. Gdy dowiemy się, jaka może być ich maksymalna masa, poznamy wiele niedostępnych obecnie faktów z astrofizyki, mówi doktorant Thankful Cromartie.
      Pulsar J0740+6620 tworzy układ podwójny z białym karłem. To właśnie dzięki temu udało się precyzyjnie określić jego masę. Pulsary emitują bowiem z obu biegunów fale radiowe. Emisja ma miejsce w bardzo regularnych odstępach. Jako, że wspomniany pulsar ma towarzysza, to gdy z ziemskiego punktu widzenia znajduje się za nim, obecność białego karła zagina przestrzeń, co powoduje pojawienie się zjawiska znanego jako opóźnienie Shapiro. Z powodu obecności obiektu zniekształcającego przestrzeń, sygnał radiowy musi przebyć nieco dłuższą drogę, by dotrzeć do Ziemi. W omawianym przypadku opóźnienie wynosi około 10 milisekund. To wystarczy, by na tej podstawie wyliczyć masę białego karła. Gdy już ją znamy, z łatwością da się wyliczyć masę towarzyszącego mu pulsara.
      Położenie tego układu podwójnego względem Ziemi stworzyło nam wyjątkową okazję. Istnieje granica, poza którą gęstość we wnętrzu gwiazd neutronowych jest tak wielka, iż grawitacja przezwycięża materię i gwiazda dalej się zapada. Każda kolejna „rekordowo masywna” gwiazda neutronowa, którą odkrywamy, przybliża nas do odkrycia tej granicy i pozwala lepiej zrozumieć zjawiska fizyczne zachodzące przy tak olbrzymich gęstościach, mówi astronom Scott Ransom.
      Badania były prowadzone w ramach programu NANOGrav Physics Frontiers Center.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kanadyjsko-amerykański zespół badawczy znalazł dowody wskazujące, że materiał znajdujący się pod powierzchnią gwiazd neutronowych może być najtwardszym materiałem we wszechświecie. M. E. Caplan, A. S. Schneider i C. J. Horowitz opisali na łamach Physical Review Letters swoje symulacje i uzyskane wyniki.
      Nie od dzisiaj wiadomo, że gwiazdy neutornowe charakteryzują się wyjątkowo duża gęstością. Wcześniejsze badania sugerowały, że w związku z tym, powierzchnia gwiazd neutronowych jest niezwykle wytrzymała. Teraz Caplan, Schneider i Horowitz twierdzą, że materiał położony bezpośrednio pod powierzchnią jest jeszcze twardszy niż ona sama.
      Astrofizycy teoretyzują, że w gwiazdach neutronowych gęsto upakowane neutrony tworzą pod powierzchnią najróżniejsze kształty. Wiele z nich nazwano „makaronem”. Teraz uczeni postanowili sprawdzić, czy materiał ten może być bardziej gęsty i twardy niż powierzchnia gwiazdy.
      Przeprowadzili liczne symulacje, które wykazały, że mamy tam do czynienia z najtwardszym materiałem we wszechświecie. Jest on 10 miliardów razy twardszy od stali. To jednak nie wszystko. Symulacje te dowodzą też, że gwiazdy neutronowe, poprzez swoje silne pole grawitacyjne, mogą zaburzać czasoprzestrzeń. A zaburzenia te są skutkiem nieregularnego charakteru „makaronu” wewnątrz gwiazd. Niewykluczone, że w przyszłości zaobserwujemy fale grawitacyjne wywoływane tymi zaburzeniami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niezwykła emisja w podczerwieni, pochodząca z pobliskiej gwiazdy neutronowej, może wskazywać, że obiekty takie mają nieznane nam dotychczas właściwości. Istnienie tej emisji może wskazywać, że gwiazda jest otoczona dyskiem pyłu, inna możliwość to wiatr o dużej energii wiejący od gwiazdy i zderzający się z gazem w przestrzeni międzygwiezdnej.
      Gwiazdy neutronowe są zwykle badane w paśmie radiowym oraz w pasmach o wysokich energiach, jak np. w paśmie promieniowania X.  Teraz amerykańsko-turecki zespół wykazał, że wiele interesujących informacji można zdobyć, badając je w podczerwieni.
      Ta konkretna gwiazda neutronowa należy do grupy siedmiu pobliskich pulsarów, zwanych Wspaniałą Siódemką, które są cieplejsze niż powinny, jeśli weźmiemy pod uwagę ich wiek i pozostałe zapasy energii. Wokół gwiazdy RX J0806.4-4123 zaobserwowaliśmy szeroki obszar emisji w podczerwieni rozciągający się na odległość około 200 j.a. od pulsaru, mówi główna autorka badań, profesor Bettina Posselt z Pennsylvania State University.
      To pierwsza gwiazda neutronowe, której tak szeroko emitowany sygnał jest widoczny tylko w podczerwieni. Jedna hipoteza mówi, że wokół gwiazdy znajduje się materiał pozostały po eksplozji supernowej. Interakcja tego materiału z gwiazdą neutronową może rozgrzać pulsar i go spowolnić. Jeśli ta hipoteza się potwierdzi, zmieni się nasze rozumienie ewolucji gwiazd neutronowych, stwierdza Posselt.
      Drugie możliwe wyjaśnienie to istnienie plerionu, czyli mgławicy wiatru pulsarowego. Do zaistnienia plerionu konieczne jest pojawienie się wiatru pulsarowego. Wiatr taki może powstawać, gdy cząstki są przyspieszane w polu elektrycznym obracającej się gwiazdy neutronowej. Gdy gwiazda taka przemieszcza się przez przestrzeń szybciej niż prędkość dźwięku, dochodzi do interakcji pomiędzy wiatrem pulsarowym a materią międzygwiezdną. Cząstki emitują wówczas promieniowanie synchrotronowe i widzimy sygnał w podczerwieni. Zwykle mgławice wiatru pulsarowego są widoczne w zakresie promieniowania X. Istnienie plerionu widocznego tylko w podczerwieni to coś niezwykłego i ekscytującego, wyjaśnia uczona.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA poinformowała, że odkryty w Boże Narodzenie ubiegłego roku niezwykły rozbłysk gamma został spowodowany albo eksplozją oddalonej o miliardy lat supernowej nieznanego typu, albo też niezwykłą kolizją w naszej własnej galaktyce.
      Agencja opublikowała właśnie dokument, opisujący obydwa możliwe wydarzenia.
       
      Rozbłyski gamma to najpotężniejsze eksplozje we wszechświecie. W ciągu kilku sekund rozbłysk emituje więcej energii niż nasze Słońce wyprodukuje w czasie całego swojego życia.
       
      „Rozbłysk bożonarodzeniowy" czyli GRB 101225A został odkryty w gwiazdozbiorze Andromedy przez Swift's Burst Alert Telescope. Ttrwał on co najmniej 28 minut, czyli niezwykle długo jak na tego typu wydarzenie. Obserwacje pozostałej po nim poświaty nie pozwoliły na dokładne określenie odległości miejsca eksplozji od Ziemi.
       
      Naukowcy pracujący pod kierunkiem Christiny Thoene z Instituto de Astrofísica de Andalucía wysunęli teorię na temat przyczyn wybuchu. Ich zdaniem mogło do niego dojść w egzotycznym układzie podwójnym, gdzie gwiazda neutronowa obiegała zwykłą gwiazdę, która weszła w etap czerwonego olbrzyma, gwałtownie zwiększając swoją objętość. Gwiazda neutronowa znalazła się wewnątrz olbrzyma i w ciągu kilkunastu miesięcy została wchłonięta przez jego jądro. To przyczyniło się do powstania czarnej dziury i pojawienia się dwóch przeciwbieżnych strumieni cząstek poruszających się niemal z prędkością światła. Powstała też niewielka supernowa. Strumienie wyemitowały promienie gamma, które zaobserwowaliśmy jako rozbłysk.
       
      Naukowcy obliczyli, że jeśli takie zdarzenie miało miejsce, to doszło do niego w odległości 5,5 miliarda lat świetlnych od Ziemi. W pobliżu zaobserwowano też obiekt, który może być słabo świecącą galaktyką.
       
      Jednak zdaniem Serio Campany z Osservatorio Astronomico di Brera, powyższa interpretacja nie jest jedyną możliwą. Jeśli zaobserwowany obiekt rzeczywiście jest galaktyką, dowiedziona zostanie teoria o systemie podwójnym. Jeśli jednak odkryty zostanie pulsar, teoria Thoene nie utrzyma się.
       
      Campana i jego zespół zaproponowali inne możliwe rozwiązanie. Ich zdaniem duży podobny do komety obiekt został zniszczony przez siły pływowe, a jego resztki uderzyły w gwiazdę neutronową znajdującą się w odległości zaledwie 10 000 lat świetlnych od Ziemi. W tym scenariuszu zakłada się, że obiekt, który uległ zniszczeniu, musiał mieć masę równą połowie masy planety karłowatej Ceres. Gdy jego szczątki uderzyły w gwiazdę, doszło do rozbłysku gamma.
       
      Należący do NASA Swift's Burst Alert Telescope został wystrzelony w 2004 roku. Urządzenie znacznie zwiększyło naszą wiedzę o rozbłyskach gamma. Jak pokazuje niezwykły GRB 101225A w tej materii wciąż jest bardzo wiele do odkrycia.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...