Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Rekonstrukcja mięśni dowodzi, że 3 miliony lat temu Lucy poruszała się w pozycji wyprostowanej

Rekomendowane odpowiedzi

Cyfrowa rekonstrukcja mięśni słynnej Lucy, przedstawicielki gatunku Australopithecus afarensis, pokazuje, że potężna mięśnie nóg i miednicy były przystosowane do chodzenia pod drzewach, ale mięśnie kolan pozwalały na przyjęcie w pełni wyprostowanej postawy. Lucy żyła na terenie dzisiejszej Etiopii przed ponad 3 milionami lat. Jej skamieniałe szczątki odkryto w latach 70. ubiegłego wieku. Teraz doktor Ashleigh Wiseman z Wydziału Archeologii Cambridge University wykonała trójwymiarową rekonstrukcję jej mięśni.

Lucy to przykład jednego z najlepiej zachowanych szkieletów rodzaju Australopithecus. Doktor Wiseman wykorzystała opublikowane ostatnio dane i była w stanie odtworzyć po 36 mięśni w każdej z nóg Lucy. Symulacja wykazała, że australopitek był znacznie mocnej umięśniony niż człowiek współczesny. Na przykład główne mięśnie w łydkach i udach były dwukrotnie większe niż u H. sapiens. My mamy znacznie większy stosunek tłuszczu do mięśni. U człowieka współczesnego mięśnie stanowią 50% masy uda. U Lucy było to nawet 74%.

Paleoantropolodzy sprzeczają się, jak Lucy chodziła. Według jednych, jej sposób poruszania się przypominał kaczy chód, jaki widzimy u szympansów, gdy chodzą na dwóch nogach. Zdaniem innych, jej ruchy były bardziej podobne do naszego chodu w pozycji całkowicie wyprostowanej. W ciągu ostatnich 20 lat przewagę zaczęła zdobywać ta druga opinia. Badania Wiseman to kolejny argument za w pełni wyprostowaną Lucy. Wynika z nich bowiem, że mięśnie prostowniki stawu kolanowego, do których należą mięsień czworogłowy uda, naprężacz powięzi szerokiej uda, krawiecki i stawowy kolana, i dźwignia jaką zapewniały, pozwalały na wyprostowanie kolana w takim samym stopniu jak u zdrowego H. sapiens.

Możemy stwierdzić zdolność Lucy do poruszania się w pozycji wyprostowanej tylko wówczas, jeśli zrekonstruujemy mięśnie i sposób ich pracy. Obecnie jesteśmy jedynym zwierzęciem, które jest w stanie stać w pozycji wyprostowanej z wyprostowanymi kolanami. Budowa mięśni Lucy wskazuje, że poruszała się w pozycji wyprostowanej równie sprawnie jak my. Także wówczas, gdy przebywała na drzewie. Lucy prawdopodobnie poruszała się w sposób, jakiego obecnie nie obserwujemy u żadnego żyjącego gatunku, mówi Wiseman.

Australopithecus afarensis żył na rozległych sawannach oraz w gęstych lasach. Wykonana przez Wiseman rekonstrukcja pokazuje, że w obu tych środowiskach poruszał się równie sprawnie.

Rekonstrukcja mięśni była już wykorzystywana na przykład do oceny prędkości biegu gatunku Tyrannosaurus rex. Wykorzystując podobną technikę do badania naszych przodków możemy odkryć całe spektrum sposobów poruszania się, które napędzały naszą ewolucję. W tym i te zdolności, które utraciliśmy, mówi Wiseman.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Specjaliści z Wydziału Medycyny Weterynaryjnej Uniwersytetu Przyrodniczego we Wrocławiu (UPWr) zrekonstruują część dzioba samicy dzioboroga abisyńskiego (Bucorvus abyssinicus) z ZOO Łódź. Joanna, bo tak ptak ma na imię, uległa kiedyś wypadkowi i połamała sobie dziób. Obecna proteza nie jest, niestety, trwała. Ostatnio dzioboróg przeszedł w Klinice Chirurgii UPWr tomografię dzioba.
      Dziób, poza tym, że jest „paszczą” do jedzenia, pełni jeszcze wiele innych funkcji: [jest wykorzystywany do] pielęgnowania upierzenia, budowania gniazda, wychowywania młodych. Jest jak twarz i dłonie naraz dla człowieka – opowiada dr Anna Bunikowska, lekarka weterynarii w Miejskim Ogrodzie Zoologicznym w Łodzi.
      Dr Tomasz Piasecki, adiunkt z Katedry Epizootiologii z Kliniką Ptaków i Zwierząt Egzotycznych UPWr, wyjaśnia, że wykonanie dobrej i trwałej protezy nie jest wcale łatwe. Wcześniej naukowcy wypożyczyli okaz z Muzeum Przyrodniczego Uniwersytetu Wrocławskiego i wykonali tomografię jego kompletnego dzioba. [...] Dziś wykonaliśmy tomograf dzioba Joanny i na tej podstawie będziemy mogli przystąpić do projektu protezy. Musimy się też zastanowić, jak potem tę protezę przymocować. Dziób będzie prawdopodobnie wydrukowany w [...] 3D z odpowiedniego tworzywa i koniecznym będzie lekkie jego skrócenie, by móc go stabilnie zamocować - podkreśla specjalista.
      Prace i przygotowania jeszcze trochę potrwają. Zgodnie z planem, zabieg rekonstrukcji ma zostać przeprowadzony w klinice UPWr za 1-1,5 miesiąca.
      Dziobórg (in. dzioborożec) abisyński występuje w środkowej Afryce na południe od Sahelu.  Samce są nieco większe od samic. Gatunek ten zamieszkuje sawanny, regiony kamieniste, a także półpustynne zakrzewienia. Lubi krótszą roślinność, która ułatwia mu żerowanie na bezkręgowcach i małych kręgowcach (ptak odżywia się m.in. pająkami, gąsienicami, żółwiami czy jaszczurkami). B. abyssinicus jest narażony na wyginięcie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lucy, historyczna misja do planetoid trojańskich, spotka się ze swoją pierwszą asteroidą już w bieżącym roku. Początkowo planowano, że przelot Lucy w pobliżu pierwszej planetoidy będzie miał miejsce w 2025 roku, kiedy to pojazd miał się zbliżyć do Donaldjohansona, nazwanej tak na cześć odkrywcy szczątków hominina Lucy, od którego misja wzięła nazwę. Nadarzyła się jednak okazja, by wcześniej odwiedzić asteroidę 1999 VD57, a przy okazji przetestować unikatowy system nawigacyjny pojazdu.
      Planetoidy trojańskie, zwane trojanami Jowisza czy po prostu Trojanami, to pozostałości po formowaniu się Układu Słonecznego. Mogą więc dostarczyć cennych informacji na temat jego historii. Tworzą one dwie grupy. Jedna z nich znajduje się w punkcie libracyjnym L4 orbity Jowisza, a druga w punkcie L5. Przyjęło się, że asteroidy z punktu L4 nazywa się imionami greckich bohaterów, dlatego też cała grupa zyskała nieoficjalną nazwę „Greków”. Z kolei asteroidy z punktu L5 zwane są „Trojańczykami”. Obie grupy poruszają się po orbicie Jowisza, a kierunek ruchu powoduje, że Trojańczycy gonią Greków. Co interesujące, zanim taki podział na grupy został ustalony dwie wcześniej odkryte asteroidy – Patroklus i Hektor – zostały już nazwane. W efekcie, w grupie Trojańczyków znajduje się grecki szpieg, a w grupie Greków jest szpieg trojański.
      Lucy została wystrzelona w październiku 2021 roku. Rok później pojazd po raz pierwszy skorzystał z asysty grawitacyjnej Ziemi. Oddziaływanie naszej planety przyspieszyło Lucy i skierowało ją za orbitę Marsa. W 2024 roku pojazd po raz kolejny przeleci w pobliżu Ziemi, korzystając z jej asysty grawitacyjnej i pomknie w kierunku głównego pasa planetoid – znajdującego się między Marsem a Jowiszem – gdzie spotka się z Donaldjohansonem. NASA zdecydowała właśnie, że wcześniej – 1 listopada 2023 r. – dojdzie do spotkania z 1999 VD57.
      W głównym pasie asteroid znajdują się miliony obiektów. Wybrałem 500 000 z nich o dobrze zdefiniowanych orbitach, by zobaczyć, czy Lucy będzie przelatywała na tyle blisko któregoś z nich, że będziemy mogli się mu przyjrzeć. Ta asteroida się wyróżniała. Oryginalna trajektoria Lucy przebiegała w odległości 40 000 mil od 1999 VD57. To co najmniej trzykrotnie bliżej niż do jakiejkolwiek innej asteroidy, mówi Raphael Marschall z Obserwatorium w Nicei.
      Jednak zespół nadzorujący misję zdał sobie sprawę, że wystarczy niewielki manewr, by Lucy mogła podlecieć bliżej do asteroidy. Zdecydowano więc, że w ramach testu pionierskiego systemu nawigacyjnego Lucy pojazd zbliży się do 1999 VD57. Nowy system ma rozwiązać problem trapiący misje polegające na przelocie w pobliżu asteroidy. W czasie takich misji trudno jest dokładnie określić, w jakie odległości od asteroidy znajduje się pojazd i w które miejsce należy nakierować kamery.
      W przeszłości radzono sobie z tym problemem wykonując bardzo duża zdjęć regionu, z którym mogła znajdować się asteroida. To metoda mało efektywna, podczas której wykonuje się dużo pustych zdjęć. Lucy będzie pierwszą misją wykorzystującą automatyczny system śledzenia asteroidy. Pozwoli na wykonanie znacznie większej liczby zdjęć obiektu, wyjaśnia Hal Levison z Southwest Research Institute Boulder. Okazało się, że 1999 VD57 powoli przetestować tę nigdy wcześniej nieużywaną technikę. Szczególnie, że położenie Lucy i asteroidy względem siebie, przede wszystkim kąt względem Słońca, pod jakim Lucy będzie zbliżała się do asteroidy, są bardzo podobne do charakterystyk planowanych spotkań Lucy z Trojanami.
      Dotychczas 1999 VD57 w ogóle nie była brana pod uwagę jako cel misji, gdyż jest bardzo mała. Ma zaledwie 700 metrów średnicy. Będzie więc najmniejszą asteroidą z głównego pasa planetoid, jaką odwiedzi pojazd wysłany przez człowieka. Rozmiarami przypomina bliskie Ziemi asteroidy, które były celami misji OSIRIS-REx i DART. Teraz jednak zdecydowano, że w maju Lucy przeprowadzi manewr, w wyniku którego kilka miesięcy później zbliży się do 1999 VD57 na odległość zaledwie 450 kilometrów.
      Jak już wspomnieliśmy, w 2025 roku pojazd odwiedzi Donaldjohansona, a następnie poleci do Greków. W latach 2027–2028 spotka się z planetoidą Eurybatesem i jej satelitą Polimele, a następnie z Leukusem i Orusem. Później wróci w pobliże Ziemi, w 2031 roku po raz trzeci skorzysta z asysty grawitacyjnej, która wystrzeli ją w stronę Trojańczyków. W 2033 roku przeleci obok układu podwójnego Patroklos-Menojtios.
      Lucy nie tylko jest pierwszą misją do asteroid trojańskich Jowisza, ale też misją, która odwiedzi najwięcej planetoid w historii. Teraz to jej listy celów dopisano kolejną asteroidę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W jaki sposób mózg decyduje, jak najlepiej poruszać naszym ciałem? Okazuje się, że dla układu nerwowego to spore wyzwanie, gdyż mamy setki mięśni, które muszą być koordynowane setki razy na sekundę, a liczba możliwych wzorców koordynacji, z których musi wybierać mózg, jest większa niż liczba ruchów na szachownicy, mówi profesor Max Donelan z kanadyjskiego Simon Fraser University. Donelan i jego zespół badali, w jaki sposób ciało adaptuje się d nowych ruchów. A ich badania mogą mieć znaczenie zarówno dla treningu sportowców, jak i rehabilitacji niepełnosprawnych.
      Naukowcy zauważają, że bardzo często doświadczamy zmian zarówno w naszym organizmie, jak i w środowisku zewnętrznym. Być może lubisz biegać w niedzielę rano, Twoje mięśnie będą tym bardziej zmęczone im dłuższy dystans przebiegniesz. A może w czasie wakacji biegasz po plaży, gdzie podłoże jest luźne i nierówne w porównaniu z chodnikiem, po którym codziennie chodzisz. Od dawna jesteśmy w stanie rejestrować zmiany w sposobie poruszania się, ale dotychczas chyba nie docenialiśmy, w jaki sposób nasz organizm do takich zmian się adaptuje, stwierdza Donelan.
      Chcąc przyjrzeć się tym zmianom kanadyjscy neurolodzy podjęli współpracę z inżynierami z Uniwersytetu Stanforda, którzy specjalizują się w tworzeniu egzoszkieletów.
      Badania kanadyjsko-amerykańskiego zespołu przyniosły bardzo interesujące wyniki. Okazało się, że system nerwowy, ucząc się wzorców koordynacji nowych ruchów, najpierw rozważa i sprawdza wiele różnych wzorców. Stwierdzono to, mierząc zmienność zarówno samego ruchu ciała jako takiego, jak i ruchów poszczególnych mięśni i stawów. W miarę, jak układ nerwowy adaptuje się do nowego ruchu, udoskonala go, a jednocześnie zmniejsza zmienność. Naukowcy zauważyli, że gdy już nasz organizm nauczy się nowego sposobu poruszania się, wydatek energetyczny na ten ruch spada aż o 25%.
      Z analiz wynika również, że organizm odnosi korzyści zarówno z analizy dużej liczby możliwych wzorców ruchu, jak i ze zmniejszania z czasem liczby analizowanych wzorców. Zawężanie poszukiwań do najbardziej efektywnych wzorców pozwala bowiem na zaoszczędzenie energii.
      Zrozumienie, w jaki sposób mózg szuka najlepszych sposobów poruszania ciałem jest niezwykle ważne zarówno dla ultramaratończyka, przygotowującego się do biegu w trudnym terenie, jak i dla pacjenta w trakcie rehabilitacji po uszkodzeniu rdzenia kręgowego czy wylewu. Na przykład trener, który będzie wiedział, w którym momencie organizm jego podopiecznego zaadaptował się do nowego programu treningowego, będzie wiedział, kiedy można wdrożyć kolejne nowe elementy. A twórcy egzoszkieletów pomagających w rehabilitacji dowiedzą się, w którym momencie można przed pacjentem postawić nowe zadania, bo dobrze opanował wcześniejsze.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Troje studentów architektury Politechniki Wrocławskiej (PWr) przygotowało koncepcję rekonstrukcji jednej z najbardziej zagadkowych budowli na Dolnym Śląsku - średniowiecznego zamku widma w Bardzie.
      W ramach zajęć rekonstrukcją warowni zajęli się Barbara Całko, Magdalena Ambroszko i Michał Grzywaczewski. Studenci pracowali pod kierunkiem dr. Rolanda Mruczka.
      Do czasów współczesnych z zamku w Bardzie zachowały się jedynie fragmenty partii fundamentowych, niewielkie pozostałości murów obronnych i odkopana półkolista klatka schodowa prowadząca do podpiwniczenia. Jak wyjaśnia Całko, bazując tylko na tym, trudno byłoby odtworzyć, jak warownia wyglądała. Stworzenie koncepcji jej bryły wymagało więc gruntownego i krytycznego przejrzenia materiałów źródłowych, których nie było zbyt wiele, a przede wszystkim szukania poszlak, wskazówek i podobieństw wśród innych obiektów o takim samym przeznaczeniu i chronologii. Studenci prowadzili swego rodzaju śledztwo, a w jego trakcie konsultowali się z naukowcami z uczelni.
      Oprócz tego Całko, Ambroszko i Grzywaczewski udali się osobiście do Barda, by przeprowadzić inwentaryzację i wykonać fotografie.
      Jedna z najbardziej zagadkowych budowli na Dolnym Śląsku
      Opisywany zamek powstał na początku XIV w. Wydaje się, że wykorzystywano go do ochrony strefy nadgranicznej. Mógł też pełnić funkcję książęcej komory celnej.
      Prawdopodobnie warownia ucierpiała podczas wojen husyckich. Pod koniec XVI w. ostatecznego zniszczenia dokonało trzęsienie ziemi. W pewnym momencie budowla stała się źródłem materiałów budowlanych dla innych obiektów w okolicy. Z biegiem lat zniknęła bez śladu...
      Aż do 1982 r. nie wiedziano na pewno, gdzie dokładnie [zamek] się znajdował. Sprawy nie ułatwiał fakt, że dopiero w 1934 r. dr Clausnitzer odkrył wymieniane w 1096 i 1155 r. dwa grody kasztelańskie w Bardzie, dość szczegółowo rozpoznane archeologicznie w latach 80. XX w. Istnienie trzeciego obiektu obronnego uznano za mało prawdopodobne, zwłaszcza że zamek nie był wymieniany przez źródła historyczne. Tymczasem już w końcu XIX w. badacz Oscar Vug znalazł na Górze Bardzkiej zagłębienie, które uznano za studnię. Jej mit do dzisiaj jest powielany. Niewykluczone, że było to po prostu wnętrze zamkowej wieży [obronnej], której kolisty fundament o średnicy 10,1 m odkryto w całości dopiero w trakcie wykopalisk dzięki archeologom Czesławowi Francke i Jerzemu Lodowskiemu - opowiada dr Mruczek.
      Koncepcje rekonstrukcji zamku w Bardzie
      Autorem pierwszej koncepcji rekonstrukcji jest uczestniczący w wykopaliskach prof. Ernest Niemczyk z PWr; datuje się ona na lata 80. XX w. Później powstawały też inne wizje warowni. W Muzeum Miejskim Wrocławia znajduje się makieta zaprojektowana przez muzealnego archeologa dr. Pawła Maderę i wykonana przez inną pracownicę Muzeum Annę Gąsior. Konsultantem projektu był dr Artur Boguszewicz z Uniwersytetu Wrocławskiego.
      Model bryłowy naszych studentów spotkał się z dużym zainteresowaniem i bardzo dobrym przyjęciem w środowisku archeologów i architektów, bo niejako „przywrócił zamek do życia”. Sprawił, że obiekt zmaterializował się. Rekonstrukcja studentów jest bardzo fotograficzna, nie trzeba sobie zbyt wiele „dowyobrażać”. Studenci po raz pierwszy podjęli też próbę odtworzenia sąsiedniego podzamcza - podkreśla dr Mruczek.
      Studencki model bryłowy
      Ponieważ materiałów źródłowych było mało, a z zamku również niewiele pozostało, studenci musieli się przyjrzeć podobnym budowlom z tego samego okresu: zamkom w Będzinie, Cisach, Frymburku, Wleniu i Bolesławcu nad Prosną.
      Wg nich, zamek typu sasko-heskiego składał się z wieży mieszkalnej o wysokości ~15 m, bergfriedu (czyli wieży ostatecznej obrony) o wysokości ok. 22 m, pięciu pomieszczeń towarzyszących i muru obwodowego z furtą.
      Całko, Ambroszko i Grzywaczewski przyjęli 5 najbardziej prawdopodobnych rozwiązań układu przestrzennego zamku. Rozważono 2 wersje bergfriedu (wieży typu stołp): 1) z hurdycją, czyli drewnianą galerią nadwieszoną u szczytu, lub 2) blankami, in. krenelażem. Studenci założyli, że jedynym wejściem do zamku właściwego była furta od strony południowo-wschodniej; można ją było pokonać wyłącznie pieszo. Wg nich, mury obronne miały ok. 10 m wysokości i były wyposażone w przedpiersie z krenelażem. Uznaliśmy również, że mur obwodowy zamku musiał mieć przyporę, ponieważ postawiono go na skale i to w dodatku na stromym zboczu. W naszej koncepcji umieściliśmy ją tam, gdzie nachylenie terenu było największe – tłumaczy Całko.
      Jak napisano w komunikacie prasowym PWr, na zajęciach z metodologii badań naukowych inni studenci przygotowywali modele w formie wizualizacji dla zamków: w Bolkowie, we Wleniu, Chojnowie, na Ślęży, w Prochowicach, Grodźcu, zamków Chojnik, Cisy, Rogowiec, Radosno, Bolczów w Janowicach Wielkich, dworu obronnego w Sędziszowej koło Świerzawy oraz zamku lewobrzeżnego we Wrocławiu, kaplicy zamkowej w Legnicy i legnickiego zamku jako całości.
      Ćwierćwiecze archeologii architektury w praktyce
      Takie rekonstrukcje są tworzone już od ćwierćwiecza. Z inicjatywą praktycznych wyzwań dla młodych architektów-historyków i konserwatorów z zacięciem badawczym [...] wyszli profesorowie Jerzy Rozpędowski i Stanisław Medeksza, którzy zaczęli przygotowywać studentów i doktorantów do pracy badawczej w misjach archeologicznych w basenie Morza Śródziemnego.
      Początkowo w ramach zajęć studenci przygotowywali makiety kartonowe, w ostatnich latach, oprócz rekonstrukcji wirtualnych, coraz popularniejsze stają się zaś modele uzyskane za pomocą drukarek 3D.
      Warto zapoznać się z niektórymi pracami z lat ubiegłych, np. z rekonstrukcją zburzonego w 1956 r. budynku Starej Rzeźni Miejskiej (przy ul. Łaziennej we Wrocławiu), koncepcją przemian bryły Katedry św. Jana Chrzciciela we Wrocławiu (od XII do XIV w.) czy rekonstrukcją średniowiecznej Bramy Ziębickiej w Strzelinie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzisiaj ok. godziny 11:30 czasu polskiego z przylądka Canaveral wystartowała misja Lucy – pierwsza w historii misja do asteroid trojańskich. Znajdują się one poza orbitą Jowisza, w odległości ok. 850 milionów kilometrów od Słońca. Są pozostałościami po formowaniu się planet, więc ich badania powinny dostarczyć nowych informacji na temat początków Układu Słonecznego. Lucy doleci do nich za 12 lat.
      Asteroidy trojańskie, zwane trojanami Jowisza lub po prostu Trojanami, tworzą dwie grupy. Jedna z nich znajduje się w punkcie libracyjnym L4 orbity Jowisza, a druga w punkcie L5. Przyjęło się, że asteroidy z punktu L4 nazywa się imionami greckich bohaterów, dlatego też cała grupa zyskała nieoficjalną nazwę „Greków”. Z kolei asteroidy z punktu L5 zwane są „Trojańczykami”. Obie grupy poruszają się po orbicie Jowisza, a kierunek ruchu powoduje, że Trojańczycy gonią Greków.
      Co interesujące, zanim taki podział na grupy został ustalony dwie wcześniej odkryte asteroidy – Patroklus i Hektor – zostały już nazwane. W efekcie, w grupie Trojańczyków znajduje się grecki szpieg, a w grupie Greków jest szpieg trojański.
      Lucy najpierw przeleci dwukrotnie w pobliżu Ziemi. Następnie poleci do L4, czyli Greków. Tam w latach 2027–2028 spotka się z Eurybatesem i jego satelitą Polimele, a następnie z Leukusem i Orusem. Później podąży w kierunku L5 (Trojańczyków). Po drodze odwiedzi Donaldjohansona, asteroidę z głównego pasa, nazwaną tak na cześć odkrywcy szczątków hominina Lucy, od którego misja wzięła nazwę. Ponownie przeleci też w pobliżu Ziemi. Po dotarciu do Trojańczyków w roku 2033 Lucy przeleci obok podwójnego układu Patroclus-Menoetius. Po wykonaniu zadania Lucy będzie krążyła pomiędzy obiema grupami asteroid trojańskich, odwiedzając każdą z nich co sześć lat.
      Co ciekawe, pojazd zasilany będzie przez energię słoneczną, a że będzie to najdalsza od Słońca misja zasilana w ten sposób, wyposażono ją w gigantyczne rozkładane panele słoneczne. Są tak wielkie, że mogłyby przykryć kilkupiętrowy budynek. Gdy są złożone ich grubość wynosi zaledwie 10 cm. Po rozłożeniu każdy z paneli ma średnicę 7,3 metra, waży 77 kilogramów i... nie jest w stanie utrzymać własnej wagi w polu grawitacyjnym Ziemi.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...