Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zapowiedź naukowej rewolucji. Uczeni wykryli pojedynczy atom za pomocą promieniowania X

Rekomendowane odpowiedzi

Po raz pierwszy w historii udało się zarejestrować sygnaturę pojedynczego atomu w zakresie promieniowania rentgenowskiego. Osiągnięcie, którego autorami są naukowcy z Ohio University, Argonne National Laboratory i University of Illinois-Chicago, może zrewolucjonizować sposób, w jaki identyfikowane są materiały i wykrywane pierwiastki. Promieniowanie rentgenowskie ma wiele zastosowań. Od obrazowania medycznego po systemy bezpieczeństwa na lotniskach. W generator tego typu promieniowania został też wyposażony łazik Curiosity, który za jego pomocą bada skład marsjańskich skał.

Identyfikacja materiałów w próbce to jedno z ważnych zastosowań promieniowania rentgenowskiego. Przez lata, dzięki rozwojowi technologicznemu, ilość materiału wymagana do przeprowadzenia skutecznej identyfikacji ciągle się zmniejszała. Obecnie możemy w ten sposób identyfikować próbki zawierające zaledwie attogram materiału. To około 10 000 atomów. Potrzebujemy ich tak wiele, gdyż sygnał generowany przez pojedynczy atom jest niezwykle słaby. Tymczasem naukowcy od dawna marzyli o możliwości identyfikowania pojedynczego atomu tą metodą.

Atomy można obrazować za pomocą skaningowych mikroskopów elektronowych, ale bez promieniowania rentgenowskiego nie jesteśmy w stanie powiedzieć, z jakich atomów składa się materiał. Teraz możemy wykrywać konkretne atomy i jednocześnie badać ich stan, mówi profesor Saw Wai Hla, który kierował badaniami. Gdy już jesteśmy w stanie to zrobić, możemy identyfikować materiał na poziomie pojedynczego atomu. To będzie miało olbrzymi wpływ na nauki biologiczne i medyczne, być może nawet pozwoli na znalezienie lekarstw na różne choroby. To odkrycie zmieni świat, dodaje uczony.

Podczas eksperymentów naukowcy postanowili wykryć pojedynczy atom żelaza oraz pojedynczy atom terbu, które znajdowały się w molekułach. Żeby zidentyfikować poszczególne atomy badacze wyposażyli konwencjonalny detektor w wyspecjalizowaną końcówkę z metalu, którą umieścili niezwykle blisko badanej próbki, by zarejestrować elektrony wzbudzone za pomocą promieniowania rentgenowskiego. Wykorzystali więc znaną technikę synchrotronowej rentgenowskiej skaningowej mikroskopii tunelowej. Atom jest identyfikowany dzięki fotoabsorpcji elektronów niewalencyjnych, które wraz z jądrem atomu tworzą tzw. rdzeń atomowy. Jak mówi profesor Hla, spektrum tym elektronów jest unikatowe, co pozwala na identyfikację poszczególnych atomów.

Wykorzystanie promieniowania rentgenowskiego do wykrywania i charakteryzowania poszczególnych atomów może zrewolucjonizować badania i doprowadzić do pojawienia się nowych technologi w dziedzinach kwantowych informacji, wykrywania pierwiastków śladowych w środowisku czy w badaniach medycznych. Otwiera to też drogę do tworzenia nowych materiałów na potrzeby instrumentów medycznych, dodaje doktorant Tolulope Michael Ajayi.

Drugim, obok możliwości identyfikowania pojedynczego atomu, z celów badań jest wykorzystanie tej techniki do określenia wpływu otoczenia na pojedynczy atom pierwiastków ziem rzadkich. Porównując stany chemiczne wykrytego przez nas atomu żelaza i atomu terbu znajdujących się w ich molekułach, stwierdziliśmy, że atom terbu – pierwiastka ziem rzadkich – jest raczej izolowany i nie zmienia swojego stanu chemicznego, a atom żelaza wchodzi w silne interakcje z otoczeniem, informuje profesor Hla. Możliwość prowadzenia takich badań pozwoli nam na manipulowanie materiałami tak, by lepiej spełniały stawiane przed nimi zadania.


« powrót do artykułu
  • Lubię to (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wodór, najbardziej rozpowszechniony pierwiastek we wszechświecie, wciąż potrafi zaskoczyć naukowców. Pomimo dziesięcioleci intensywnych badań i bardzo prostej struktury – w końcu atom wodoru składa się z jednego protonu i jednego elektronu – wiele jego właściwości wciąż pozostaje tajemnicą. Naukowcy z Uniwersytetu Christiana Albrechta w Kilonii i Helmholtz-Zentrum Dresden-Rossendorf drogą teoretycznych obliczeń zauważyli niespodziewaną właściwość wodoru. W warunkach wysokiego ciśnienia wodór powinien zachowywać się jak roton, kwazicząstka wprowadzona przez Richarda Feynmana na określenie stanów wzbudzonych nadciekłego helu-4.
      To niespodziewane zachowanie wodoru przejawia się na przykład niezwykłym rozpraszaniem promieniowania rentgenowskiego w gęstym wodorze. Normalnie promieniowanie rentgenowskie przekazuje energię do elektronów, a transfer energii jest tym większy, im większy jest przekazany pęd. W przeprowadzonych obliczeń wynika jednak, że w gęstym wodorze energia może spadać wraz ze wzrostem transferu pędu.
      Zjawisko takie obserwowano dotychczas jedynie w bardzo egzotycznych układach, cieczach Bosego schłodzonych to temperatury bliskiej zeru absolutnemu. Ciecze takie znajdują się w stanie nadciekłym, zachodzą w nich zjawiska kwantowe i nie da się ich opisać na gruncie klasycznej mechaniki. Ta nowa właściwość wodoru jest powodowana przez elektrony, które nie są powiązane z atomami. Jeśli wodór zostanie wzbudzony promieniowaniem rentgenowskim o pewnej długości fali, elektrony mogą zbliżyć się do siebie na niezwykle małą odległość, a nawet tworzyć pary, mimo że zwykle się odpychają, wyjaśniają profesor Michael Bonitz i doktor Tobias Dornheim.
      Naukowcy dokładnie wyliczyli, jakie właściwości wodoru powinny zostać zaobserwowane w opisywanych przez warunkach. Teraz fizycy-eksperymentatorzy mogą pokusić się o zweryfikowanie tych obliczeń w praktyce.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Być może po raz pierwszy udało się odkryć planetę poza Drogą Mleczną, poinformowali naukowcy prowadzący obserwacje za pomocą Chandra X-ray Observatory. Jeśli rzeczywiście zauważyli oni planetę poza naszą galaktyką, oznacza to, że już teraz jesteśmy w stanie wykrywać planety znajdujące się znacznie dalej niż dotychczas. Nowa kandydatka na egzoplanetę został zauważony w galaktyce spiralnej Messier 51 (M51).
      Dotychczas odkryto tysiące egzoplanet. Wszystkie one jednak znajdują się w Drodze Mlecznej i niemal wszystkie w odległości mniejszej niż 3000 lat świetlnych od Ziemi. Tymczasem egzoplaneta w M51 byłaby oddalona od nas o około 28 milionów lat świetlnych.
      Próbujemy otworzyć całkiem nowy rozdział w poszukiwaniu egzoplanet. Szukamy ich w zakresie promieniowania rentgenowkiego, co umożliwia obserwowanie planet w innych galaktykach, wyjaśnia główna autorka badań, Rosanne Di Stefano z Center for Astrophysics | Harvard & Smithsonian (CfA).
      Prawdopodobna planeta została zarejestrowana podobnie jak dotychczas odkryte egzoplanety. Obiekt zauważono metodą tranzytu. Gdy na tle gwiazdy przechodzi planeta, możemy zaobserwować spadek jasności gwiazdy, której światło jest częściowo przesłaniane przez jej towarzyszkę. W ten właśnie sposób odkryto tysiące egzoplanet, prowadząc obserwacje w świetle widzialnym.
      Z kolei Di Stefano i jej zespół szukali takich samych zjawisk w układach podwójnych w zakresie promieniowania rentgenowskiego. Zwykle źródłami takiego promieniowania są albo gwiazda neutronowa, albo czarna dziura, wyciągające materię z towarzyszącej jej gwiazdy. Jako, że takie źródła są małe, planeta przechodząca na ich tle powinna zablokować większość lub całość promieniowania. Zatem tego typu tranzyty powinny być łatwe do zauważenia, gdyż źródło promieniowania może okresowo regularnie znikać. Powinniśmy móc je zaobserwować ze znacznie większej odległości niż tranzyty badane w paśmie światła widzialnego. W ich przypadku bowiem przechodząca planeta blokuje minimalną część światła swojej gwiazdy.
      Zespół Di Stefano wykorzystał więc metodę obserwacji w paśmie rentgenowskim do znalezienia kandydatki na planetę, znajdującej się w układzie podwójnym M51-ULS-1 w galaktyce M51. Układ ten składa się z czarnej dziury lub gwiazdy neutronowej krążącej wokół gwiazdy o masie ok. 20-krotnie większej od masy Słońca. Naukowcy zauważyli, że źródło promieniowania rentgenowskiego zniknęło na około 3 godziny. Na podstawie zgromadzonych danych stwierdzili, że możemy mieć do czynienia z planetą o rozmiarach Saturna, która krąży wokół gwiazdy neutronowej lub czarnej dziury w odległości 2-krotnie większej niż odległość między Saturnem a Słońcem.
      To niezwykle interesująca interpretacja, jednak potrzebujemy więcej informacji, by potwierdzić, że odkryto pierwszą planetę poza naszą galaktyką. Problem w tym, że jeśli to rzeczywiście planeta, która krąży w takiej odległości od gwiazdy lub czarnej dziury, to na kolejny tranzyt musimy poczekać około 70 lat. Niestety, aby potwierdzić, że to planety, będziemy musieli poczekać całe dekady na kolejny tranzyt. A jako, że nie wiemy, w jakim dokładnie czasie obiega ona źródło promieniowania, nie wiemy dokładnie, kiedy powinniśmy patrzeć, mówi współautorka badań Nia Imara z University of California w Santa Cruz.
      Jeśli rzeczywiście mamy tutaj do czynienia z planetą, to o bardzo burzliwej historii. Musiała ona bowiem przetrwać eksplozję supernowej w wyniku której powstała gwiazda neutronowa lub czarna dziura. W pewnym momencie dojdzie też do eksplozji gwiazdy towarzyszącej źródłu promieniowania.
      Di Stefano i jej zespół poszukiwali tranzytów w trzech galaktykach: M51 (Galaktyka Wir), Messier 101 (M101, Galaktyka Wiatraczek) oraz Messier 104 (M104, Galaktyka Sombrero). W Wirze przyjrzeli się 55 układom podwójnym, w Wiatraczku sprawdzili 64 układy, a w Sombrero – 119. Teraz planują przeszukanie archiwów teleskopów Chandra i XMM-Newton, w poszukiwaniu wcześniejszych tranzytów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów korzystając z kosmicznego teleskopu eROSITA znajdującego się na pokładzie misji Spektr-RG odkrył powtarzające się co kilka/kilkanaście godzin wybuchy w zakresach promieniowania rentgenowskiego pochodzące z obszarów centralnych w dwóch galaktykach. Wcześniej nie wykazywały one jakiejkolwiek aktywności. Praca właśnie ukazała się w prestiżowym periodyku Nature. Głównym autorem pracy jest Riccardo Acordia - doktorant z Max Planck Institute for Extraterrestrial Physics (MPE). Członkiem zespołu badawczego był również dr Mariusz Gromadzki.
      W centrum prawie każdej galaktyki znajduje się supermasywna czarna dziura. W przypadku galaktyk podobnych do naszej Drogi Mlecznej, masy supermasywnych czarnych dziur zawierają się w przedziale od kilkuset tysięcy do kilku milionów mas Słońca. Dla porównania masa czarnej dziury w Drodze Mlecznej to pięć milionów mas Słońca. Supermasywne czarne dziury nie emitują żadnego światła, a o ich obecności astronomowie wnioskują na podstawie zachowania gwiazd i materii w ich najbliższym sąsiedztwie.
      Są też galaktyki ze znacznie masywniejszymi czarnymi dziurami (ich masy mogą sięgać nawet setek milionów mas Słońca). Otoczone są one  dyskami materii, która w ogromnych ilościach jest przez nie pochłaniana. Wewnętrzne obszary takich dysków są rozgrzane do ogromnej temperatury i emitują olbrzymie ilości promieniowania, często kilkakrotnie większego niż wszystkie gwiazdy w danej galaktyce. Obiekty takie nazywamy kwazarami i oznaczamy je skrótem AGN (ang. active galactic nuclei), czyli aktywne jądra galaktyk. Są to najjaśniejsze obiekty we Wszechświecie.   
      Podczas rutynowego skanowania nieba eROSITA znalazła nietypowe obiekty zlokalizowane w centrach dwóch galaktyk, które niemal w regularnych odstępach czasu, co kilka/kilkanaście godzin, wysyłały ostre impulsy w promieniowaniu rentgenowskim. Emitowana podczas nich energia jest porównywalna z całkowitą energią wypromieniowywaną przez ich macierzyste galaktyki. Było to odkrycie o tyle zaskakujące, że wcześniej podobne zjawisko zostało odkryte w przypadku dwóch kwazarów, a ich natura tłumaczona był procesami fizycznymi występującymi w wewnętrznych obszarach dysków akrecyjnych. Nowo odkryte zjawiska zostały potwierdzone przy użyciu dwóch innych rentgenowskich teleskopów XMM-Newton oraz NICER.
      W tym przypadku galaktyki, z których dochodzą impulsy są spokojne i nie pokazywały wcześniej żadnej zmienności związanej z pochłanianiem materii przez supermasywne czarne dziury. Są to zupełnie normalne galaktyki podobne do naszej Drogi Mlecznej. Przyczyną tych zjawisk nie jest do końca zrozumiała. Z pewnością w tym przypadku można odrzucić wyjaśnienie wymagające obecności dysku akrecyjnego.  Najbardziej prawdopodobną przyczyną tej pseudo-okresowej zmienności jest obecność w pobliżu  supermasywnej czarnej dziury gwiazdy, której orbita jest znacząco wydłużona. W momencie gdy gwiazda znajduje się najbliżej czarnej dziury,  część jej atmosfery jest odrywana przez ogromną grawitację, a następnie pochłaniana. Dalsze obserwacje oraz badania teoretyczne tych obiektów pozwolą potwierdzić bądź odrzucić proponowany scenariusz oraz zrozumieć mechanizmy aktywowania czarnych dziur w typowych galaktykach.
      W opublikowanych badaniach brał udział doktor Mariusz Gromadzki z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego. Zajmował  się on opracowaniem widm optycznych tych obiektów uzyskanych przy pomocy 10 metrowego teleskopu SALT zlokalizowanego w Republice Południowej Afryki. Widma te pozwoliły na wyznaczenie odległości do tych galaktyk oraz oszacowanie energii emitowanej podczas tych zjawisk.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ostatnia runda testów wykazała, że supercienkie lekkie lustra pracujące w zakresie promieniowania rentgenowskiego są gotowe do testów w kosmosie. Lustra te mogą posłużyć do budowy teleskopów kolejnej generacji.
      Nowe lustra to dzieło Willa Zhanga i jego zespołu z Goddard Space Flight Ceneter w stanie Maryland. Stanowią one część Projektu Referencyjnego Misji dla koncepcyjnego Lynx X-ray Observatory. To jedna z czterech potencjalnych misji wybranych przez NASA w ramach 2020 Decadal Survey for Astrophysics. Lustra są na tyle obiecujące, że już zdecydowano, iż ich testy w przestrzeni kosmicznej rozpoczną się w 2021 roku.
      Lynx X-ray Observatory, jeśli NASA zdecyduje się na jego budowę, będzie następcą najważniejszego teleskopu pracującego obecnie w paśmie rentgenowskim – Chandra X-ray Observatory. Lynx, który może trafić w przestrzeń kosmiczną już w latach 30. bieżacego wieku, a który będzie składał się z dziesiątków tysięcy luster opracowanych w Goddard, mógłby być o dwa rzędy wielkości bardziej czuły niż Chandra. To pokazuje, jak olbrzymiego skoku technologicznego dokonano na przestrzeni ostatnich 2 dekad. Teleskop Chandra, który został wystrzelony w 1999 roku, jest w stanie rejestrować źródła promieniowania rentgenowskiego, które są 100-krotnie słabsze niż te obserwowane przez poprzednie teleskopy.
      Praca nad nowymi lustrami dla teleskopu przyszłości rozpoczęła się przed 7 laty, gdy Zhang zaczął eksperymenty z monokryształem krzemu, materiałem nigdy wcześniej nie używanym w teleskopach rentgenowskich. Lustro musi być zagięte i zamknięte w cylindrze tak, by fotony promieniowania rentgenowskiego odbiły się od jego powierzchni i trafiły do elementów rejestrujących. Zhang wiedział, że, ze względu na koszty całości, jego lustra muszą być łatwe w produkcji, lekkie i supercienkie, a jednocześnie oferować doskonałą jakość.
      Wykazaliśmy, że takie elementy można zbudować z taniego, powszechnie występującego materiału, który jest odporny na oddziaływania mogące zmienić kształt szkła, tradycyjnie wykorzystywanego do tworzenia luster teleskopów, mówi Zhang. Powołany przez NASA panel 40 ekspertów orzekł, że lustra Zhanga zapewniają taką samą jakość obrazu co większe i cięższe lustra używane obecnie przez Chandra X-ray Observatory. Eksperci potwierdzili, że rozdzielczość nowych luster wynogi 0,5 sekundy kątowej, jest więc porównywalna z rozdzielczością telewizji Ultra HD, a są przy tym 50-krotnie lżejsze i cieńsze od tych używanych przez Chandrę. Oznacza to, że przyszły teleskop będzie mógł korzystać ze znacznie większej liczby luster, przechwyci więc znacznie więcej światła, a co za tym idzie, będzie znacznie bardziej czuły.
      Zhang podkreśla jednak, że minie jeszcze sporo czasu, zanim lustra będą gotowe do lotu w przestrzeń kosmiczną. Wraz ze swoim zespołem musi jeszcze opracować metodę połączenia poszczególnych segmentów wielkiego lustra w module, który będzie je chronił podczas startu rakiety i zapewni, że w czasie zachodzących wówczas silnych drgań żadne elementy nie ulegną poluzowaniu. Uczony przyznaje, że pozostało mu niewiele czasu. W ciągu zaledwie dwóch lat Zhang i jego zespół muszą dostarczyć duże lustro składające się z 288 mniejszych do profesora Randalla McEntaffera. To uczony z Pennsylvania State University, który przygotowuje misję o nazwie Off-plane Grating Rocket Experiment (OGRE). Misja ta ma wystartować w 2021 roku i wyniesie w przestrzeń kosmiczną różne instrumenty naukowe pracujące w paśmie rentgenowskim. To właśnie w ramach OGRE mają być testowane nowe lustra. Pozostały więc zaledwie dwa lata by pokonać liczne przeszkody techniczne i dostarczyć element gotowy do testów.
      Zhang optymistycznie patrzy w przyszłość. Jeśli nawet Lynx X-ray Observatory nie zostanie wybrany tą misją, która ma być realizowana w ramach 2020 Decadel Survey, to i tak z nowych luster skorzystają inni. NASA rozważa bowiem przeprowadzenie kilku mniejszych obserwacji promieni rentgenowskich w ramach programu Probe, wiadomo też, że to badaniu kosmicznego promieniowania X myślą Japończycy.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Technologia akceleratorowa, nad którą pracują naukowcy z Centrum Liniowego Akceleratora Stanforda (SLAC) i Uniwersytetu Stanforda, ma ograniczyć skutki uboczne radioterapii przez znaczne skrócenie czasu sesji: z minut do poniżej sekundy.
      Ostatnio ekipie ze SLAC i Uniwersytetu Stanforda przyznano dofinansowanie. Dzięki niemu uda się rozwinąć 2 metody terapii: jedną wykorzystującą protony i drugą bazującą na promieniowaniu rentgenowskim. W obu chodzi o to, by "zbombardować" komórki nowotworowe tak szybko, by narządy i inne tkanki nie miały czasu, by się przemieścić w czasie ekspozycji. To zmniejsza ryzyko, że promieniowanie uszkodzi zdrowe tkanki wokół guza. W ten sposób terapia przeciwnowotworowa stanie się bardziej precyzyjna.
      Dostarczanie dawki promieniowania z całej sesji za pośrednictwem pojedynczego błysku trwającego poniżej sekundy może być ostatecznym sposobem na poradzenie sobie ze stałym ruchem narządów i tkanek [...] - podkreśla prof. Billy Loo ze Szkoły Medycznej Stanforda.
      By wystarczająco skutecznie dostarczać promieniowanie o wysokiej intensywności, potrzebujemy struktur akceleratorowych, których moc jest kilkaset razy większa od dzisiejszych technologii. Finansowanie, które nam przyznano, pomoże je zbudować - dodaje Sami Tantawi, prof. fizyki cząstek i astrofizyki w SLAC.
      W ramach projektu PHASER będzie rozwijany system dla promieniowania rentgenowskiego. Skonstruowane w ubiegłych latach prototypy części do akceleratorów działają tak, jak przewidywały symulacje i torują drogę rozwiązaniom zapewniającym więcej mocy przy mniejszych rozmiarach.
      W kolejnym etapie [...] ocenimy ryzyko związane z technologią, co w ciągu 3-5 lat powinno doprowadzić do powstania pierwszego prawdziwego urządzenia, które zostanie wykorzystane do testów klinicznych - zaznacza Tanawi.
      Amerykanie zaznaczają, że zasadniczo protony są dla zdrowej tkanki mniej szkodliwe od promieniowania rentgenowskiego, bo dzięki masie cząstek (protonów) można precyzyjnie kontrolować uwalnianie energii (początkowo protony oddają stosunkowo nieduże ilości energii do tzw. chmur elektronowych tkanek, przez które przechodzą, a na końcu ich drogi dochodzi do tzw. efektu hamowania; długość drogi hamowania, która mieści się już w chorej tkance, to ok. 1-4 mm). Terapia protonowa wymaga jednak większych urządzeń do przyspieszania cząstek i dostosowywania ich energii. Potrzebne są też bardzo ciężkie magnesy, które obracając się wokół pacjenta, nakierowują wiązkę na cel.
      Chcemy zaproponować innowacyjne metody manipulowania wiązkami protonów. Dzięki nim przyszłe urządzenia będą prostsze, bardziej kompaktowe i szybsze - opowiada Emilio Nanni ze SLAC.
      Dzięki 1,7-mln grantowi z DoE (Departamentu Energii) staje się to wykonalne. Teraz możemy zaawansować prace nad projektowaniem, produkcją i testami struktury akceleratorowej podobnej do tej z projektu PHASER [...].
      Mówiąc o korzyściach związanych z rozwijaną metodą akceleratorową, naukowcy dodają, że podczas badań na myszach widać było, że gdy dawkę promieniowania podawano bardzo szybko, zdrowe komórki nie były tak bardzo uszkadzane, a oddziaływanie na komórki guza okazywało się co najmniej takie samo, jak przy konwencjonalnej długiej ekspozycji. Jeśli wyniki uda się powtórzyć na ludziach, będzie można mówić o całkiem nowym paradygmacie w zakresie radioterapii - podkreśla Loo.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...