-
Similar Content
-
By KopalniaWiedzy.pl
Martin Peterson z Uniwersytetu w Montrealu odkrył egzoplanetę wielkości Ziemi, która prawdopodobnie pokryta jest wulkanami. LP 791-18 d znajduje się w odległości 90 lat świetlnych od Ziemi, a badania za pomocą Teleskopu Spitzera, TESS oraz teleskopów naziemnych sugerują, że do erupcji wulkanicznych dochodzi nań równie często jak na Io – księżycu Jowisza – najbardziej aktywnym pod tym względem obiekcie w Układzie Słonecznym.
LP 971-18 d obraca się synchronicznie ze swoją gwiazdą, a to oznacza, że jedna jej połowa wciąż jest zwrócona w stronę gwiazdy. Strona dzienna jest prawdopodobnie zbyt gorąca, by na jej powierzchni mogła istnieć woda w stanie ciekłym. Jednak intensywna działalność wulkaniczna do której, jak podejrzewamy, dochodzi na całej planecie, może podtrzymywać istnienie atmosfery, a to z kolei może pozwalać na kondensację wody po stronie nocnej, mówi profesor Björn Benneke, który zaplanował i nadzorował badania.
Planeta LP 791-18 d krąży wokół niewielkiego czerwonego karła znajdującego się w Gwiazdozbiorze Pucharu. Dotychczas znaliśmy tam dwie planety, LP 791-18 b oraz c. Położona bliżej gwiazdy planeta b jest o około 20% większa od Ziemi, z kolei c jest 2,5-krotnie większa i 7-krotnie bardziej masywna od naszej planety. Nowo odkryta d jest tylko nieco większa i bardziej masywna od Ziemi.
Podczas każdego okrążenia gwiazdy planety d i c mijają się w niewielkiej odległości. Bardziej masywna c przyciąga do siebie d, przez co jej orbita jest nieco eliptyczna. I za każdym razem, gdy mija c, oddziaływanie grawitacyjne bardziej masywnej planety powoduje deformacje planety d. Deformacje te prowadzą do pojawienia się wewnętrznego tarcia i uwalniania olbrzymich ilości energii, która znajduje ujście w aktywności wulkanicznej na jej powierzchni.
Planeta d znajduje się w ekosferze swojej gwiazdy, zatem w takiej odległości od niej, w której może istnieć woda w stanie ciekłym. Jeśli rzeczywiście jest ona geologicznie aktywna, to może posiadać atmosferę, a temperatury na stronie nocnej powinny być na tyle niskie, że dochodzi tam do kondensacji pary wodnej.
Odkrywcy LP 917-18 d uważają, że jest ona bardzo dobrym celem badawczym dla Teleskopu Webba. Tym bardziej, że planeta c będzie za jego pomocą badana. Bardzo ważne pytanie na polu astrobiologii brzmi, czy aktywność tektoniczna lub wulkaniczna jest niezbędna do pojawienia się życia. Procesy takie mogą nie tylko zapewniać atmosferę, ale również dostarczać na powierzchnię planet materiał, który w innym wypadku by zatonął i zostałby uwięziony w skorupie. Takim materiałem jest np. węgiel, który uważany jest za ważny dla pojawienia się życia, mówi Jessie Christiansen z Exoplanet Science Institute.
« powrót do artykułu -
By KopalniaWiedzy.pl
Przed miesiącem pisaliśmy, że astronomowie z Yale University donieśli o odkryciu czarnej dziury, która ciągnie za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Informacja odbiła się szerokim echem, gdyż takie zjawisko wymagałoby spełnienia całego szeregu wyjątkowych warunków. Liczne zespoły naukowe zaczęły poszukiwać alternatywnego wyjaśnienia zaobserwowanej przez Hubble'a struktury. Naukowcy z Instituto de Astrofísica de Canarias przedstawili na łamach Astronomy and Astrophysics Letters własną interpretację obserwowanego zjawiska.
Ich zdaniem niezwykła struktura zarejestrowana przez Hubble'a może być płaską galaktyką, którą widzimy od strony krawędzi. Galaktyki takie nie posiadają centralnego zgrubienia i są dość powszechne. Ruch, rozmiary i liczba gwiazd pasują do tego, co widzimy w płaskich galaktykach w lokalnym wszechświecie, mówi główny autor najnowszych badań, Jorge Sanchez Almeida. Proponowany przez nas scenariusz jest znacznie prostszy. Chociaż z drugiej strony szkoda, że to może być wyjaśnieniem, gdyż teorie przewidują, że wyrzucenie czarnej dziury z galaktyki jest możliwe, tutaj więc mielibyśmy pierwszą obserwację takiego zjawiska, dodaje.
Almeida i jego zespół porównali strukturę zaobserwowaną przez Hubble'a z dobrze znaną nieodległą galaktyką IC5249, która nie posiada centralnego zgrubienia, i znaleźli zaskakująco wiele podobieństw. Gdy przeanalizowaliśmy prędkości w tej odległej strukturze gwiazd okazało się, że odpowiadają one prędkościom obrotowym galaktyk, więc postanowiliśmy porównać tę strukturę ze znacznie nam bliższą galaktyką i okazało się, że są one wyjątkowo podobne, dodaje współautorka artykułu Mireia Montes.
Naukowcy przyjrzeli się też stosunkowi masy do maksymalnej prędkości obrotowej i odkryli, że to galaktyka, która zachowuje się jak galaktyka, stwierdza Ignacio Trujillo. Jeśli uczeni z Wysp Kanaryjskich mają rację, to Hubble odkrył interesujący obiekt. Dużą galaktykę położoną w odległych od Ziemi regionach, gdzie większość galaktyk jest mniejsza.
« powrót do artykułu -
By KopalniaWiedzy.pl
Teleskop Kosmiczny Jamesa Webba prawdopodobnie znalazł galaktyki, których istnienie przeczy standardowemu modelowi kosmologicznemu. Wydaje się, że są one zbyt masywne jak na czas swoich narodzin.
Astronomowie z The University of Texas at Austin informują na łamach Nature Astronomy, że sześć z najstarszych i najbardziej masywnych galaktyk zaobserwowanych przez JWST wydaje się przeczyć najbardziej rozpowszechnionym poglądom obowiązującym w kosmologii. Naukowcy szacują bowiem, że galaktyki te narodziły się w ciągu 500–700 milionów lat po Wielkim Wybuchu, a ich masa wynosi ponad 10 miliardów mas Słońca. Jedna z nich wydaje się nawet równie masywna co Droga Mleczna, a jest od niej o miliardy lat młodsza.
Jeśli szacunki dotyczące masy są prawidłowe, to wkraczamy na nieznane terytorium. Wyjaśnienie tego zjawiska będzie wymagało dodania czegoś całkowicie nowego do teorii formowania się galaktyk lub modyfikacji poglądów kosmologicznych. Jednym z najbardziej niezwykłych wyjaśnień byłoby stwierdzenie, że wkrótce po Wielkim Wybuchu wszechświat rozszerzał się szybciej, niż sądzimy. To jednak mogłoby wymagać dodania nowych sił i cząstek, mówi profesor Mike Boylan-Kolchin, który kierował zespołem badawczym. Co więcej, by tak masywne galaktyki uformowały się tak szybko, w gwiazdy musiałoby zamienić się niemal 100% zawartego w nich gazu. Zwykle w gwiazdy zamienia się nie więcej niż 10% gazu galaktyki. I o ile konwersja 100% gazu w gwiazdy mieści się w teoretycznych przewidywaniach, to taki przypadek wymagałby zupełnie innych zjawisk, niż obserwujemy, dodaje uczony.
Dane, jakich dostarczył JWST, mogą postawić astronomów przed poważnym problemem. Jeśli bowiem masy i wiek wspomnianych galaktyk zostaną potwierdzone, mogą być potrzebne fundamentalne zmiany w obowiązującym modelu kosmologicznym. Takie, które dotkną też ciemnej materii i ciemnej energii. Jeśli istnieją inne, szybsze sposoby formowania się galaktyk, albo też więcej materii było dostępnej we wczesnym wszechświecie, konieczna będzie radykalna zmiana poglądów.
Oceny wieku i masy wspomnianych 6 galaktyk to wstępne szacunki. Następnym etapem prac powinno być przeprowadzenie badań spektroskopowych. W ich trakcie może się np. okazać, że czarne dziury w centrach galaktyk tak bardzo podgrzewają otaczający je gaz, że galaktyki są jaśniejsze, zatem wydają się bardziej masywne niż w rzeczywistości. Nie można też wykluczyć, że galaktyki tak naprawdę są młodsze, ale znajdujący się pomiędzy nami a nimi pył zmienia kolor docierającego z nich światła tak, iż jest ono bardziej przesunięte ku czerwieni, zatem wydaje się dochodzić z większej odległości, a zatem z młodszych galaktyk.
« powrót do artykułu -
By KopalniaWiedzy.pl
Z galaktyki NGC 253, położonej o 11,4 miliona lat świetlnych od nas, wieje wiatr o temperaturze milionów stopni. Każdego roku wywiewa on z centrum galaktyki gaz o masie dwukrotnie większej od masy Ziemi. Wiatr ten wzbogaca przestrzeń międzygwiezdną w materiał, z którego mogą powstać gwiazdy, planety oraz w składniki niezbędne do powstania życia.
NGC 253 to galaktyka spiralna, jest zatem podobna do Drogi Mlecznej, jednak gwiazdy tworzą się w niej 2 do 3 razy szybciej niż w naszej galaktyce. Naukowcy z Ohio wykorzystali teraz obserwacje wiatru galaktycznego do sprawdzenia źródła jego pochodzenia.
Uczeni zauważyli, że gęstość i temperatura wiatru są najwyższe w odległościach nie przekraczających 800 lat świetlnych od centrum galaktyki, później zaś zmniejszają się. Obserwacja ta nie zgadza się z wcześniejszymi modelami przewidującymi, że wiatry pochodzące z galaktyk gwiazdotwórczych mają sferyczny kształt. Są za to zgodne z nowszymi przewidywaniami, mówiącymi, że wiatry takie pochodzą z pierścieni wielkich gromad młodych masywnych gwiazd. Jednak i tutaj zgodność nie jest pełna, co sugeruje, że mamy do czynienia z mechanizmami, których współczesna nauka nie rozumie.
Być może tym brakującym elementem jest fakt, że w pewnym momencie temperatura wiatru zaczyna gwałtownie spadać. To może wskazywać, że wiatr „wbija się” w zimny gaz, który go ochładza i spowalnia. Uwzględnienie takiego mechanizmu mogłoby ewentualnie wyjaśnić rozbieżność pomiędzy modelami a obserwacjami.
Sebastian Lopez i jego zespół z Ohio State University przyjrzeli się też składowi tego wiatru i stwierdzili, że zawiera on tlen, neon, magnes, krzem, siarkę i żelazo. Co interesujące, zawartość tych pierwiastków w wietrze szybko spada w miarę zwiększania się odległości do centrum galaktyki. Takiego zjawiska nie zaobserwowano wcześniej w przypadku dobrze przestudiowanej galaktyce gwiazdotwórczej M82. Dlatego też potrzebne są kolejne badania, które pozwolą stwierdzić, skąd biorą się te różnice.
« powrót do artykułu -
By KopalniaWiedzy.pl
W odległości 9,2 miliardów lat świetlnych od Ziemi zauważono galaktykę z supermasywną czarną dziurą. Jej otoczenie wykazuje cechy gromady galaktyk – olbrzymiej struktury mogącej zawierać nawet tysiące galaktyk – jednak 3C 397 jest samotna. Wszystko wskazuje na to, że wchłonęła ona wszystko, co znajdowało się w jej pobliżu.
Astronomowie korzystający z Chandra X-ray Observatory, Karl G. Jansky Very Large Array i International Gemini Observaotry zauważyli olbrzymie ilości gazu podgrzanego do temperatury milionów stopni, dżet z kwazaru zagięty przez interakcje z otoczeniem oraz dżet z innego kwazaru zderzający się z otaczającym go gazem. Wszystkie te elementy są charakterystyczne dla gromady galaktyk. Jednak 3C 397 jest samotna.
Jedna z hipotez dotyczących takiego ukształtowania otoczenia 3C 397 mówi, że wchłonęła ona otaczające ją galaktyki. Jeśli tak jest w rzeczywistości, to mamy tutaj do czynienia z tzw. gromadą szczątkową, czyli etapem ewolucji, w której jedna galaktyka przyciąga i wchłania inne. Byłaby więc to najbardziej odległa ze znanych gromad szczątkowych. Naukowcy nie mogą wykluczyć, że w pobliżu 3C 397 znajdują się jakieś galaktyki karłowate, ale ich ewentualna obecność nie wyjaśnia braku dużych galaktyk. Przez kolejne miliardy lat nowo odkryta galaktyka będzie sama.
Najbardziej niezwykły jest fakt, że 3C 397 znajduje się w tak dużej odległości od Ziemi. Dotychczas najbardziej odległa znana gromada szczątkowa znajdowała się 4,9 miliarda lat świetlnych od nas. Współautorka badań, Mischa Schirmer z Instytutu Astronomii im. Maxa Plancka mówi, że trudno będzie wyjaśnić powstanie gromady szczątkowej już 4,6 miliardów lat po Wielkim Wybuchu. Jej istnienie nie przeczy teoriom kosmologicznym, ale pokazuje, że galaktyki i gromady galaktyk mogą ewoluować znacznie szybciej niż sądzimy.
Ze szczegółami badań można zapoznać się w artykule Powerful Yet Lonely: Is 3C 297 a High-redshift Fossil Group?.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.