Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przyszłość walki z nowotworami: skrócenie czasu ekspozycji z minut do poniżej sekundy

Recommended Posts

Technologia akceleratorowa, nad którą pracują naukowcy z Centrum Liniowego Akceleratora Stanforda (SLAC) i Uniwersytetu Stanforda, ma ograniczyć skutki uboczne radioterapii przez znaczne skrócenie czasu sesji: z minut do poniżej sekundy.

Ostatnio ekipie ze SLAC i Uniwersytetu Stanforda przyznano dofinansowanie. Dzięki niemu uda się rozwinąć 2 metody terapii: jedną wykorzystującą protony i drugą bazującą na promieniowaniu rentgenowskim. W obu chodzi o to, by "zbombardować" komórki nowotworowe tak szybko, by narządy i inne tkanki nie miały czasu, by się przemieścić w czasie ekspozycji. To zmniejsza ryzyko, że promieniowanie uszkodzi zdrowe tkanki wokół guza. W ten sposób terapia przeciwnowotworowa stanie się bardziej precyzyjna.

Dostarczanie dawki promieniowania z całej sesji za pośrednictwem pojedynczego błysku trwającego poniżej sekundy może być ostatecznym sposobem na poradzenie sobie ze stałym ruchem narządów i tkanek [...] - podkreśla prof. Billy Loo ze Szkoły Medycznej Stanforda.

By wystarczająco skutecznie dostarczać promieniowanie o wysokiej intensywności, potrzebujemy struktur akceleratorowych, których moc jest kilkaset razy większa od dzisiejszych technologii. Finansowanie, które nam przyznano, pomoże je zbudować - dodaje Sami Tantawi, prof. fizyki cząstek i astrofizyki w SLAC.

W ramach projektu PHASER będzie rozwijany system dla promieniowania rentgenowskiego. Skonstruowane w ubiegłych latach prototypy części do akceleratorów działają tak, jak przewidywały symulacje i torują drogę rozwiązaniom zapewniającym więcej mocy przy mniejszych rozmiarach.

W kolejnym etapie [...] ocenimy ryzyko związane z technologią, co w ciągu 3-5 lat powinno doprowadzić do powstania pierwszego prawdziwego urządzenia, które zostanie wykorzystane do testów klinicznych - zaznacza Tanawi.

Amerykanie zaznaczają, że zasadniczo protony są dla zdrowej tkanki mniej szkodliwe od promieniowania rentgenowskiego, bo dzięki masie cząstek (protonów) można precyzyjnie kontrolować uwalnianie energii (początkowo protony oddają stosunkowo nieduże ilości energii do tzw. chmur elektronowych tkanek, przez które przechodzą, a na końcu ich drogi dochodzi do tzw. efektu hamowania; długość drogi hamowania, która mieści się już w chorej tkance, to ok. 1-4 mm). Terapia protonowa wymaga jednak większych urządzeń do przyspieszania cząstek i dostosowywania ich energii. Potrzebne są też bardzo ciężkie magnesy, które obracając się wokół pacjenta, nakierowują wiązkę na cel.

Chcemy zaproponować innowacyjne metody manipulowania wiązkami protonów. Dzięki nim przyszłe urządzenia będą prostsze, bardziej kompaktowe i szybsze - opowiada Emilio Nanni ze SLAC.

Dzięki 1,7-mln grantowi z DoE (Departamentu Energii) staje się to wykonalne. Teraz możemy zaawansować prace nad projektowaniem, produkcją i testami struktury akceleratorowej podobnej do tej z projektu PHASER [...].

Mówiąc o korzyściach związanych z rozwijaną metodą akceleratorową, naukowcy dodają, że podczas badań na myszach widać było, że gdy dawkę promieniowania podawano bardzo szybko, zdrowe komórki nie były tak bardzo uszkadzane, a oddziaływanie na komórki guza okazywało się co najmniej takie samo, jak przy konwencjonalnej długiej ekspozycji. Jeśli wyniki uda się powtórzyć na ludziach, będzie można mówić o całkiem nowym paradygmacie w zakresie radioterapii - podkreśla Loo.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      CERN pochwalił się osiągnięciem przez Wielki Zderzacz Hadronów (LHC) rekordowej świetlności. Obok energii wiązki, w przypadku LHC maksymalna energia każdej z wiązek ma wynieść 7 TeV (teraelektronowoltów), to właśnie świetlność jest najważniejszym parametrem akceleratora. Zintegrowana świetlność to najbardziej interesujący fizyka parametr urządzenia. Oznacza ona liczbę zderzeń zachodzących w urządzeniu. A im więcej zderzeń, tym więcej danych dostarcza akcelerator.
      Jednostką świetlności jest odwrócony barn (b-1) lub jego jednostki pochodne, jak femtobarny (fb-1). W trakcie pierwszej kampanii naukowej (Run 1), która prowadzona była w latach 2010–2012 średnia zintegrowana świetlność LHC wyniosła 29,2 fb-1. Przez kolejne lata akcelerator był remontowany i rozbudowywany. Druga kampania naukowa miała miejsce w latach 2015–2018. Wówczas, w ciągu czterech lat pracy, akcelerator osiągnął średnią zintegrowaną świetlnośc 159,8 fb-1.
      Obecnie trwająca kampania, zaplanowana na lata 2022–2025, rozpoczęła się zgodnie z planem. W roku 2022 efektywny czas prowadzenia zderzeń protonów wyniósł 70,5 doby, a średnia zintegrowana świetlność osiągnęła poziom 0,56 fb-1 na dzień. W roku 2023 rozpoczęły się problemy. Niezbędne naprawy urządzenia zajmowały więcej czasu niż planowano i przez cały rok zderzenia protonów prowadzono jedynie przez 47,5 dnia, jednak średnia zintegrowana świetlność wyniosła 0,71 fb-1 na dzień.
      Bieżący rok jest zaś wyjątkowy. Wydajność LHC przewyższyła oczekiwania. Do 2 września 2024 roku akcelerator zderzał protony łącznie przez 107 dni, osiągając przy tym średnią zintegrowaną jasność rzędu 0,83 fb-1 na dzień. Dzięki temu na kilka miesięcy przed końcem trzeciego roku obecnej kampanii naukowej jego średnia zintegrowana świetlność wyniosła 160,4 fb-1, jest zatem większa niż przez cztery lata poprzedniej kampanii.
      W bieżącym roku LHC ma też przeprowadzać zderzenia jonów ołowiu. Zanim jednak do tego dojdzie, będzie przez 40 dni pracował z protonami. Powinno to zwiększyć jego zintegrowaną świetlność o koleje 33 fb-1. To o 12 fb-1 więcej niż zaplanowano na bieżący rok.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wodór, najbardziej rozpowszechniony pierwiastek we wszechświecie, wciąż potrafi zaskoczyć naukowców. Pomimo dziesięcioleci intensywnych badań i bardzo prostej struktury – w końcu atom wodoru składa się z jednego protonu i jednego elektronu – wiele jego właściwości wciąż pozostaje tajemnicą. Naukowcy z Uniwersytetu Christiana Albrechta w Kilonii i Helmholtz-Zentrum Dresden-Rossendorf drogą teoretycznych obliczeń zauważyli niespodziewaną właściwość wodoru. W warunkach wysokiego ciśnienia wodór powinien zachowywać się jak roton, kwazicząstka wprowadzona przez Richarda Feynmana na określenie stanów wzbudzonych nadciekłego helu-4.
      To niespodziewane zachowanie wodoru przejawia się na przykład niezwykłym rozpraszaniem promieniowania rentgenowskiego w gęstym wodorze. Normalnie promieniowanie rentgenowskie przekazuje energię do elektronów, a transfer energii jest tym większy, im większy jest przekazany pęd. W przeprowadzonych obliczeń wynika jednak, że w gęstym wodorze energia może spadać wraz ze wzrostem transferu pędu.
      Zjawisko takie obserwowano dotychczas jedynie w bardzo egzotycznych układach, cieczach Bosego schłodzonych to temperatury bliskiej zeru absolutnemu. Ciecze takie znajdują się w stanie nadciekłym, zachodzą w nich zjawiska kwantowe i nie da się ich opisać na gruncie klasycznej mechaniki. Ta nowa właściwość wodoru jest powodowana przez elektrony, które nie są powiązane z atomami. Jeśli wodór zostanie wzbudzony promieniowaniem rentgenowskim o pewnej długości fali, elektrony mogą zbliżyć się do siebie na niezwykle małą odległość, a nawet tworzyć pary, mimo że zwykle się odpychają, wyjaśniają profesor Michael Bonitz i doktor Tobias Dornheim.
      Naukowcy dokładnie wyliczyli, jakie właściwości wodoru powinny zostać zaobserwowane w opisywanych przez warunkach. Teraz fizycy-eksperymentatorzy mogą pokusić się o zweryfikowanie tych obliczeń w praktyce.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii udało się zarejestrować sygnaturę pojedynczego atomu w zakresie promieniowania rentgenowskiego. Osiągnięcie, którego autorami są naukowcy z Ohio University, Argonne National Laboratory i University of Illinois-Chicago, może zrewolucjonizować sposób, w jaki identyfikowane są materiały i wykrywane pierwiastki. Promieniowanie rentgenowskie ma wiele zastosowań. Od obrazowania medycznego po systemy bezpieczeństwa na lotniskach. W generator tego typu promieniowania został też wyposażony łazik Curiosity, który za jego pomocą bada skład marsjańskich skał.
      Identyfikacja materiałów w próbce to jedno z ważnych zastosowań promieniowania rentgenowskiego. Przez lata, dzięki rozwojowi technologicznemu, ilość materiału wymagana do przeprowadzenia skutecznej identyfikacji ciągle się zmniejszała. Obecnie możemy w ten sposób identyfikować próbki zawierające zaledwie attogram materiału. To około 10 000 atomów. Potrzebujemy ich tak wiele, gdyż sygnał generowany przez pojedynczy atom jest niezwykle słaby. Tymczasem naukowcy od dawna marzyli o możliwości identyfikowania pojedynczego atomu tą metodą.
      Atomy można obrazować za pomocą skaningowych mikroskopów elektronowych, ale bez promieniowania rentgenowskiego nie jesteśmy w stanie powiedzieć, z jakich atomów składa się materiał. Teraz możemy wykrywać konkretne atomy i jednocześnie badać ich stan, mówi profesor Saw Wai Hla, który kierował badaniami. Gdy już jesteśmy w stanie to zrobić, możemy identyfikować materiał na poziomie pojedynczego atomu. To będzie miało olbrzymi wpływ na nauki biologiczne i medyczne, być może nawet pozwoli na znalezienie lekarstw na różne choroby. To odkrycie zmieni świat, dodaje uczony.
      Podczas eksperymentów naukowcy postanowili wykryć pojedynczy atom żelaza oraz pojedynczy atom terbu, które znajdowały się w molekułach. Żeby zidentyfikować poszczególne atomy badacze wyposażyli konwencjonalny detektor w wyspecjalizowaną końcówkę z metalu, którą umieścili niezwykle blisko badanej próbki, by zarejestrować elektrony wzbudzone za pomocą promieniowania rentgenowskiego. Wykorzystali więc znaną technikę synchrotronowej rentgenowskiej skaningowej mikroskopii tunelowej. Atom jest identyfikowany dzięki fotoabsorpcji elektronów niewalencyjnych, które wraz z jądrem atomu tworzą tzw. rdzeń atomowy. Jak mówi profesor Hla, spektrum tym elektronów jest unikatowe, co pozwala na identyfikację poszczególnych atomów.
      Wykorzystanie promieniowania rentgenowskiego do wykrywania i charakteryzowania poszczególnych atomów może zrewolucjonizować badania i doprowadzić do pojawienia się nowych technologi w dziedzinach kwantowych informacji, wykrywania pierwiastków śladowych w środowisku czy w badaniach medycznych. Otwiera to też drogę do tworzenia nowych materiałów na potrzeby instrumentów medycznych, dodaje doktorant Tolulope Michael Ajayi.
      Drugim, obok możliwości identyfikowania pojedynczego atomu, z celów badań jest wykorzystanie tej techniki do określenia wpływu otoczenia na pojedynczy atom pierwiastków ziem rzadkich. Porównując stany chemiczne wykrytego przez nas atomu żelaza i atomu terbu znajdujących się w ich molekułach, stwierdziliśmy, że atom terbu – pierwiastka ziem rzadkich – jest raczej izolowany i nie zmienia swojego stanu chemicznego, a atom żelaza wchodzi w silne interakcje z otoczeniem, informuje profesor Hla. Możliwość prowadzenia takich badań pozwoli nam na manipulowanie materiałami tak, by lepiej spełniały stawiane przed nimi zadania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykański Departament Energii dał zielone światło do rozpoczęcia budowy PIP-II. To projekt znaczącej rozbudowy kompleksu akceleratorowego znajdującego się w Fermilab. Po ukończeniu prac będzie to najpotężniejsze na świecie źródło wysokoenergetycznych neutrin. W przeszłości w Fermilab pracował legendarny Tevatron, urządzenie niezwykle zasłużone dla fizyki. Teraz laboratorium zyska kolejny wyjątkowy instrument badawczy.
      PIP-II będzie pierwszym w USA akceleratorem cząstek, w budowę którego znaczący wkład wniosą partnerzy międzynarodowi z Polski, Francji, Indii, Włoch i Wielkiej Brytanii. Dzięki ich współpracy powstanie urządzenie zdolne do generowania wiązek protonów o mocy przekraczającej 1 megawat. To o 60% więcej niż obecne możliwości Fermilab. Dzięki supernowoczesnym rozwiązaniom akcelerator będzie w stanie dostarczyć wiązkę o odpowiednich właściwościach dla różnego rodzaju eksperymentów fizycznych.
      Jednym z najważniejszych zadań PIP-II będzie dostarczanie neutrin dla Deep Underground Neutrino Experiment (DUNE). Akceleratory z Fermilab były siłą napędową eksperymentów, które w ciągu ostatnich 50 lat doprowadziły do znaczących przełomów w fizyce. Oficjalne rozpoczęcie budowy PIP-II oznacza, że jesteśmy o krok bliżej do rozbudowy naszych instalacji i wspierania odkryć naukowych przez kolejnych 50 lat, mówi były dyrektor Fermilab, Nigel Lockyer.
      W ramach projektu PIP-II na początku łańcucha akceleratorów znajdujących się w Fermilab powstanie unikatowa potężna elastyczna pierwsze sekcja, wykorzystująca najnowsze osiągnięcia z dziedziny nadprzewodnictwa, wysokoenergetycznych systemów radiowych, sztucznej inteligencji i maszynowego uczenia się. Całość ma pozwolić na szybkie automatyczne dopasowywanie parametrów wiązki do wymagań danego eksperymentu przy minimalnym udziale człowieka.
      PIP-II zostanie ukończony w drugiej połowie obecnej dekady. Prace nad niektórymi jego elementami już zbliżają się ku końcowi. Tak jest na przykład z budynkiem zawierającym elementy kriogeniczne. Ta część PIP-II to główny wkład Departamentu Energii Atomowej Indii. A w PIP-II Injector Test Facility przeprowadzono udane testy dwóch modułów kriogenicznych. To pokazuje, że Fermilab stanie się światowym liderem w dziedzinie wykorzystania akceleratorów do badań nad neutrinami, a PIP-II będzie znaczącym wkładem w ten sukces, stwierdziła Harriet King z DOE.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Być może po raz pierwszy udało się odkryć planetę poza Drogą Mleczną, poinformowali naukowcy prowadzący obserwacje za pomocą Chandra X-ray Observatory. Jeśli rzeczywiście zauważyli oni planetę poza naszą galaktyką, oznacza to, że już teraz jesteśmy w stanie wykrywać planety znajdujące się znacznie dalej niż dotychczas. Nowa kandydatka na egzoplanetę został zauważony w galaktyce spiralnej Messier 51 (M51).
      Dotychczas odkryto tysiące egzoplanet. Wszystkie one jednak znajdują się w Drodze Mlecznej i niemal wszystkie w odległości mniejszej niż 3000 lat świetlnych od Ziemi. Tymczasem egzoplaneta w M51 byłaby oddalona od nas o około 28 milionów lat świetlnych.
      Próbujemy otworzyć całkiem nowy rozdział w poszukiwaniu egzoplanet. Szukamy ich w zakresie promieniowania rentgenowkiego, co umożliwia obserwowanie planet w innych galaktykach, wyjaśnia główna autorka badań, Rosanne Di Stefano z Center for Astrophysics | Harvard & Smithsonian (CfA).
      Prawdopodobna planeta została zarejestrowana podobnie jak dotychczas odkryte egzoplanety. Obiekt zauważono metodą tranzytu. Gdy na tle gwiazdy przechodzi planeta, możemy zaobserwować spadek jasności gwiazdy, której światło jest częściowo przesłaniane przez jej towarzyszkę. W ten właśnie sposób odkryto tysiące egzoplanet, prowadząc obserwacje w świetle widzialnym.
      Z kolei Di Stefano i jej zespół szukali takich samych zjawisk w układach podwójnych w zakresie promieniowania rentgenowskiego. Zwykle źródłami takiego promieniowania są albo gwiazda neutronowa, albo czarna dziura, wyciągające materię z towarzyszącej jej gwiazdy. Jako, że takie źródła są małe, planeta przechodząca na ich tle powinna zablokować większość lub całość promieniowania. Zatem tego typu tranzyty powinny być łatwe do zauważenia, gdyż źródło promieniowania może okresowo regularnie znikać. Powinniśmy móc je zaobserwować ze znacznie większej odległości niż tranzyty badane w paśmie światła widzialnego. W ich przypadku bowiem przechodząca planeta blokuje minimalną część światła swojej gwiazdy.
      Zespół Di Stefano wykorzystał więc metodę obserwacji w paśmie rentgenowskim do znalezienia kandydatki na planetę, znajdującej się w układzie podwójnym M51-ULS-1 w galaktyce M51. Układ ten składa się z czarnej dziury lub gwiazdy neutronowej krążącej wokół gwiazdy o masie ok. 20-krotnie większej od masy Słońca. Naukowcy zauważyli, że źródło promieniowania rentgenowskiego zniknęło na około 3 godziny. Na podstawie zgromadzonych danych stwierdzili, że możemy mieć do czynienia z planetą o rozmiarach Saturna, która krąży wokół gwiazdy neutronowej lub czarnej dziury w odległości 2-krotnie większej niż odległość między Saturnem a Słońcem.
      To niezwykle interesująca interpretacja, jednak potrzebujemy więcej informacji, by potwierdzić, że odkryto pierwszą planetę poza naszą galaktyką. Problem w tym, że jeśli to rzeczywiście planeta, która krąży w takiej odległości od gwiazdy lub czarnej dziury, to na kolejny tranzyt musimy poczekać około 70 lat. Niestety, aby potwierdzić, że to planety, będziemy musieli poczekać całe dekady na kolejny tranzyt. A jako, że nie wiemy, w jakim dokładnie czasie obiega ona źródło promieniowania, nie wiemy dokładnie, kiedy powinniśmy patrzeć, mówi współautorka badań Nia Imara z University of California w Santa Cruz.
      Jeśli rzeczywiście mamy tutaj do czynienia z planetą, to o bardzo burzliwej historii. Musiała ona bowiem przetrwać eksplozję supernowej w wyniku której powstała gwiazda neutronowa lub czarna dziura. W pewnym momencie dojdzie też do eksplozji gwiazdy towarzyszącej źródłu promieniowania.
      Di Stefano i jej zespół poszukiwali tranzytów w trzech galaktykach: M51 (Galaktyka Wir), Messier 101 (M101, Galaktyka Wiatraczek) oraz Messier 104 (M104, Galaktyka Sombrero). W Wirze przyjrzeli się 55 układom podwójnym, w Wiatraczku sprawdzili 64 układy, a w Sombrero – 119. Teraz planują przeszukanie archiwów teleskopów Chandra i XMM-Newton, w poszukiwaniu wcześniejszych tranzytów.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...