Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wilgoć zawarta w powietrzu dostarcza czystą energię przez 24 godziny na dobę

Recommended Posts

Inżynierowie z University of Massachusetts Amherst wykazali, że z niemal każdego materiału można stworzyć urządzenie pobierające energię elektryczną z pary wodnej zawartej w powietrzu. Wystarczy utworzyć w tym materiale nanopory o średnicy mniejszej niż 100 nanometrów. To niezwykle ekscytujące. Otworzyliśmy drogę do wytwarzania czystej energii z powietrza, cieszy się główny autor artykułu opisującego badania, świeżo upieczony inżynier Xiaomeng Liu.

Powietrze zawiera olbrzymie ilości energii elektrycznej. Weźmy na przykład chmurę, która jest niczym innym jak masą kropelek wody. Każda z tych kropelek zawiera ładunek elektryczny i w odpowiednich warunkach dochodzi do wyładowania. Nie potrafimy jednak pozyskiwać energii z tych wyładowań. Natomiast my stworzyliśmy niewielką chmurę, która wytwarza energię w sposób przewidywalny, możemy więc ją zbierać, dodaje profesor Jun Yao.

U podstaw najnowszego odkrycia znajduje się praca Yao i Dereka Levleya, którzy w 2020 roku wykazali, że możliwe jest nieprzerwane pozyskiwanie energii elektrycznej z powietrza za pomocą specjalnego materiału złożonego z nanokabli zbudowanych z białek bakterii Geobacter sulfureducens. Po tym, jak dokonaliśmy tego odkrycia zauważyliśmy, że tak naprawdę zdolność pozyskiwania energii z powietrza jest wbudowana w każdy materiał, który posiada pewne właściwości, mówi Yao. Wystarczy, by materiał ten zawierał pory o średnicy mniejszej niż 100 nanometrów, czyli ok. 1000-krotnie mniejszej niż średnica ludzkiego włosa.

Dzieje się tak dzięki parametrowi znanemu jako średnia droga swobodna. Jest to średnia odległość, jaką przebywa cząsteczka przed zderzeniem z inną cząsteczką. W tym wypadku mowa o cząsteczce wody w powietrzu. Średnia droga swobodna wynosi dla niej około 100 nanometrów. Yao i jego zespół zdali sobie sprawę, że mogą wykorzystać ten fakt do pozyskiwania energii elektrycznej. Jeśli ich urządzenie będzie składało się z bardzo cienkiej warstwy dowolnego materiału pełnego porów o średnicy mniejszej niż 100 nanometrów, wówczas molekuły wody będą wędrowały z górnej do dolnej części takiego urządzenia. Po drodze będą uderzały w krawędzie porów. Górna część urządzenia będzie bombardowana większą liczbą cząstek wody, niż dolna. Pojawi się w ten sposób nierównowaga ładunków jak w chmurze, której górna część jest bardziej naładowana niż dolna. W ten sposób powstanie bateria, która będzie działała dopóty, dopóki w powietrzu jest wilgoć.

To bardzo prosty pomysł, ale nikt wcześniej na niego nie wpadł. Otwiera to wiele nowych możliwości, mówi Yao. Jako, że tego typu urządzenie można zbudować praktycznie z każdego materiału, można je umieścić w różnych środowiskach. Możemy wybrazić sobie takie baterie z jednego materiału działające w środowisku wilgotnym, a z innego – w suchym. A że wilgoć w powietrzu jest zawsze, to urządzenie będzie działało przez całą dobę, niezależnie od pory dnia i roku.

Poza tym, jako że powietrze rozprzestrzenia się w trzech wymiarach, a my potrzebujemy bardzo cienkiego urządzenia, cały system bardzo łatwo można skalować, zwiększając jego wydajność i pozyskując nawet kilowaty mocy.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy i inżynierowie z University of Bristol oraz brytyjskiej Agencji Energii Atomowej (UKAEA) stworzyli pierwszą diamentową baterię z radioaktywnym węglem C-14. Urządzenia tego typu mogą działać przez tysiące lat, stając się niezwykle wytrzymałym źródłem zasilania, które może przydać się w wielu zastosowaniach. Bateria wykorzystuje radioaktywny C-14 do długotrwałego wytwarzania niewielkich ilości energii.
      Tego typu źródła zasilania mogłyby trafić do biokompatybilnych urządzeń medycznych jak np. implanty słuchu czy rozruszniki serca, a olbrzymią zaletą ich stosowania byłoby wyeliminowanie konieczności wymiany baterii co jakiś czas. Sprawdziłyby się też w przestrzeni kosmicznej czy ekstremalnych środowiskach na Ziemi, gdzie wymiana baterii w urządzeniu byłaby trudna, niepraktyczne czy niemożliwa.
      Opracowana przez nas technologia mikrozasilania może znaleźć miejsce w wielu różnych zastosowaniach, od technologii kosmicznych, poprzez bezpieczeństwo po medycynę, mówi profesor Tom Scott. Uczony przypomniał, że prace nad nowatorskim rozwiązaniem trwały przez pięć lat.
      Diamentowa bateria generuje dostarcza energię przechwytując elektrony pochodzące z rozpadu radioaktywnego węgla-14. Jako że czas półrozpadu C-14 wynosi 5730 lat, urządzenie takie może działać bardzo długo.
      Diamentowe baterie to bezpieczny i zrównoważony sposób na długotrwałe dostarczanie mocy rzędu mikrowatów. To nowa technologia, która pozwala na zamknięcie w sztucznych diamentach niewielkich ilości węgla-14, mówi Sarah Clark, dyrektor wydziału Cyklu Paliwowego Trytu w UKAEA.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Woda z komety 67P/Czuriumow-Gierasimienko ma podobny stosunek deuteru i wodoru, co woda w ziemskich oceanach, poinformował międzynarodowy zespół naukowy, pracujący pod kierunkiem Kathleen E. Mandt z NASA. To zaś ponownie otwiera dyskusję na temat roli komet rodziny Jowisza w dostarczeniu wody na Ziemię. Uzyskane właśnie wyniki stoją w sprzeczności z wcześniejszymi badaniami, jednak naukowcy stwierdzili, że wcześniejsza interpretacja wyników badań wykonanych przez satelity została zafałszowana przez pył z komety.
      W gazie i pyle, z którego uformowała się Ziemia, mogło znajdować się nieco wody, jednak większość z niej została odparowana przez Słońce. Teraz, po 4,6 miliarda lat, Ziemia jest pełna wody, a naukowcy wciąż się nad jej pochodzeniem. Mamy silne dowody wskazujące na to, że została ona przyniesiona przez asteroidy. Jednak wciąż sporna pozostaje rola komet. W ciągu kilku ostatnich dekad badania komet jowiszowych – które zawierają materiał z wczesnych etapów istnienia Układu Słonecznego i powstały poza orbitą Saturna – wykazywały silny związek pomiędzy zawartą w nich wodą, a wodą na Ziemi.
      Związek ten wynikał z podobnego stosunek deuteru do wodoru. To właśnie na jego podstawie można stwierdzić, czy woda występująca na dwóch ciałach niebieskich jest podobna, czy też nie. Woda zawierająca więcej deuteru powstaje w środowisku zimnym, dalej od Słońca. Zatem ta na kometach jest mniej podobna do ziemskiej wody niż ta na asteroidach. Jednak prowadzone przez dekady badania pary wodnej z komet jowiszowych pokazywały podobieństwa do wody na Ziemi. Dlatego też naukowcy zaczęli postrzegać te komety jako ważne źródło wody na Ziemi.
      Jednak w 2014 roku przekonanie takie legło w gruzach. Wtedy to misja Rosetta, wysłana do 67P/Czuriumow-Gierasimienko przez Europejską Agencję Kosmiczną, dostarczyła unikatowych danych na temat komety. A analizujący je naukowcy zauważyli, że stosunek deuteru do wodoru jest na niej największy ze wszystkich zbadanych komet i trzykrotnie większy niż w wodzie ziemskiej. To było olbrzymie zaskoczenie, które skłoniło nas do przemyślenia wszystkiego, mówi Mandt.
      Pracujący pod jej kierunkiem zespół specjalistów z USA, Francji i Szwajcarii, w tym uczonych, którzy brali udział w misji Rosetta, jako pierwszy przeanalizował wszystkie 16 000 pomiarów wykonanych podczas europejskiej misji. Naukowcy chcieli zrozumieć, jakie procesy fizyczne powodują zmienność stosunku deuteru do wodoru w wodzie z komet. Badania laboratoryjne, obserwacje komet i analizy statystyczne wykazały, że pył z komet może wpływać na odczyty. Byłam ciekawa, czy znajdziemy dowody na to, że podobne zjawisko miało miejsce podczas badań 67P. I okazało się, że to jeden z tych rzadkich przypadków, gdy wysuwa się jakąś hipotezę i ona całkowicie się sprawdza, mówi Mandt.
      Naukowcy znaleźli wyraźny związek pomiędzy pomiarami ilości deuteru w warkoczu 67P a ilością pyłu wokół pojazdu Rosetta. To wskazywało, że część odczytów może nie być reprezentatywna dla składu komety.
      Gdy kometa zbliża się do Słońca, jej powierzchnia ogrzewa się i z powierzchni wydobywa się gaz oraz pył. Ziarna pyłu zawierają zamarzniętą wodę. Nowe badania sugerują, że woda zawierająca więcej deuteru łatwiej przylega do pyłu, niż woda jaką spotykamy na Ziemi. Gdy lód z takich ziaren pyłu jest uwalniany do warkocza komety, może powodować, że wygląda to tak, jakby woda z komety zawierała więcej deuteru niż w rzeczywistości.
      Rosetta krążyła w odległości 10–30 kilometrów od głowy komety. Mandt i jej zespół zauważyli, że do przeprowadzenia prawidłowych pomiarów składu wody z komety konieczne jest, by uwolnione do warkocza ziarna pyłu zdążyły wyschnąć. Pozbywają się one wody dopiero w odległości co najmniej 120 kilometrów od głowy komety.
      Odkrycie ma duże znaczenie nie tylko dla zrozumienia roli komet jako źródła wody na Ziemi,a le też do lepszego zrozumienia przyszłych i przeszłych badań. To świetna okazja by jeszcze raz przyjrzeć się obserwacjom z przeszłości i lepiej przygotować się do przyszłych badań, mówi Mandt.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed 11 milionami lat w Marsa uderzyła asteroida, która wyrzuciła w przestrzeń kosmiczną fragmenty Czerwonej Planety. Jeden z tych fragmentów trafił na Ziemię i jest jednym z niewielu meteorytów, których pochodzenie można powiązać bezpośrednio z Marsem. Kto znalazł ten kawałek Marsa, nie wiadomo. Odkryto go w 1931 roku w jednej szuflad na Purdue University i nazwano Lafayette Meteorite, od miasta, w którym znajduje się uniwersytet. Nie wiadomo bowiem nawet, gdzie dokładnie meteoryt został znaleziony. Jednak jego stan zachowania wskazuje, że nie leżał na ziemi zbyt długo.
      Na kawałek skały jako pierwszy zwrócił uwagę dr O.C. Farrington, który zajmował się klasyfikacją kolekcji minerałów z uniwersyteckich zbiorów geologicznych. I to właśnie Farrington stwierdził, że skała uznana wcześniej za naniesioną przez lodowiec, jest meteorytem.
      Już podczas jednych z pierwszych badań Lafayette Meteorite naukowcy zauważyli, że na Marsie miał on kontakt z wodą w stanie ciekłym. Od tamtego czasu nie było jednak wiadomo, kiedy miało to miejsce. Dopiero teraz międzynarodowa grupa naukowa określiła wiek znajdujących się w meteorycie minerałów, które powstały w wyniku kontaktu z wodą. Wyniki badań zostały opublikowane na łamach Geochemical Perspective Letters.
      Profesor Marissa Tremblay z Purdue University wykorzystuje gazy szlachetne, jak hel, neon i argon, do badania procesów chemicznych i fizycznych kształtujących powierzchnię Ziemi. Uczona wyjaśnia, że niektóre meteoryty z Marsa zawierają minerały, które powstawały na Marsie w wyniku interakcji z wodą. Datowanie tych minerałów pozwoli nam więc stwierdzić, kiedy woda w stanie ciekłym istniała na powierzchni lub płytko pod powierzchnią Marsa. Datowaliśmy te minerały w Lafayette Meteorite i stwierdziliśmy, że powstały one 742 miliony lat temu. Nie sądzimy, by wówczas na powierzchni Marsa było zbyt dużo wody. Uważamy, że pochodziła ona z roztapiania się marsjańskiej wiecznej zmarzliny, a roztapianie się było spowodowane aktywnością magmy, do której sporadycznie dochodzi i dzisiaj, stwierdza uczona.
      Co ważne, naukowcy w trakcie badań wykazali, że ich datowanie jest wiarygodne. Na wiek minerałów mogło wpłynąć uderzenie asteroidy, która wyrzuciła z Marsa nasz meteoryt, ogrzewanie się meteorytu podczas pobytu przez 11 milionów lat w przestrzeni kosmicznej, czy też podczas podróży przez ziemską atmosferę. Wykazaliśmy, że żaden z tych czynników nie miał wpływu minerały w Lafayette, zapewnia Tremblay.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Atlantycka Niña to chłodna faza naturalnego wzorca klimatycznego. Podobnie jak znacznie bardziej znany wzorzec zachodzącej na Pacyfiku oscylacji południowej (ENSO), na którą składają się fazy El Niño, La Niña i faza neutralna, także na Atlantyku co kilka lat mamy fazę zimną i gorącą. Temperatura powierzchni oceanu we wschodniej części równikowego Oceanu Atlantyckiego wykazuje zaskakujący, nieintuicyjny cykl. Wody w tamtym regionie najcieplejsze są wiosną, a najzimniejsze w lipcu i sierpniu.
      Do tego ochłodzenia w lecie dochodzi w wyniku działalności wiatru. Gdy na półkuli północnej jest lato, równikowy pas opadów, pod wpływem silniejszego nagrzewania przez słońce, przemieszcza się na północ, co powoduje wciąganie nad równikowy Atlantyk powietrza z południowego-wschodu. Wiejące wówczas pasaty są tak silne, że przemieszczają gorące wody powierzchniowe z równika i pojawia się zjawisko upwellingu, podnoszenia się chłodnych wód głębinowych.
      Dlatego w miesiącach letnich na równikowych obszarach Atlantyku może pojawiać się zimna woda. Co kilka lat – w wyniku naturalnej zmienności – ten chłodny obszar jest albo cieplejszy, albo chłodniejszy od własnej średniej średniej. Specjaliści mówią wówczas o Atlantyckim Niño lub Niña. Zjawisko nie jest ściśle zdefiniowane, ale przyjmuje się, że jeśli 3-miesięczna średnia temperatura powierzchni przez co najmniej 2 kolejne sezony jest o 0,5 stopnia Celsjusza wyższa od średniej długoterminowej, to mamy do czynienia z Atlantyckim Niño, jeśli jest o 0,5 stopnia C niższa, jest to Atlantycka Niña.
      W bieżącym roku w lutym i marcu we wschodniej części równikowego Atlantyku mieliśmy do czynienia z ekstremalnie wysokimi temperaturami wód powierzchniowych. Przekraczały 30 stopni Celsjusza i były najwyższe od 1982 roku. Obecnie zaś, od maja, naukowy obserwują rekordowe ochładzanie się tego obszaru. Temperatura wód spadła nawet ponad 1 stopień Celsjusza. I co najbardziej zaskakujące, ochładzanie to ma miejsce w obliczu słabnących pasatów. A to one powodują upwelling, zatem im są słabsze, tym słabsze powinno być zjawisko podnoszenia się chłodnych wód z głębin. Innymi słowy naukowcy obserwują wyjątkowo szybko rozwijającą się Atlantycką Niñę w sytuacji, która nie sprzyja jej rozwojowi.
      Jak już wspomnieliśmy, o poszczególnych fazach Atlantyckich Niños mówimy przy odchyleniu rzędu 0,5 stopnia Celsjusza od średniej. Wbrew pozorom, jest do duża różnica. Te pół stopnia ma olbrzymi wpływ na poziom opadów w Afryce i Ameryce Południowej. Na przykład w fazie Niño mamy do czynienia ze zmniejszeniem opadów w Sahelu, zwiększeniem w Zatoce Gwinejskiej i zmianami wzorca opadów w północno-wschodniej części Ameryki Południowej. Ze zmianami Niños wiążą się też zmiany wzorca huraganów. Już jakiś czas temu amerykańska NOAA przewidywała, że w bieżącym roku intensywność huraganów będzie powyżej średniej. Prognozę taką opracowano na podstawie warunków panujących w równikowych obszarach Pacyfiku oraz tropikalnych regionach Północnego Atlantyku. Teraz eksperci będą z zainteresowaniem monitorowali, czy Atlantycka Niña wpłynie huragany. 

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wody na Księżycu jest znacznie mniej, niż dotychczas sądzono, informuje Norbert Schörghofer z Planetary Science Institute w Arizonie, współautor badań, których wyniki opublikowano na łamach Science Advances. Obliczenia przeprowadzone przez Schörghofera i Ralucę Rufu z Southwest Research Insitute w Kolorado, mają olbrzymie znaczenie nie tylko dla zrozumienia historii Księżyca, ale również dla założenia stałej bazy na Srebrnym Globie. Bazy, która ma wspierać załogowe wyprawy na Marsa. Kevin Cannon, geolog z Colorado School of Mines, który prowadzi spis obiecujących miejsc do lądowania i prac górniczych na Księżycu, już zaczął aktualizować ją w oparciu o wyliczenia Schörghofera i Rufu.
      Woda na Księżycu, w postaci lodu, znajduje się w stale zacienionych obszarach księżycowych kraterów. Tylko tam ma szansę przetrwać. Te stale zacienione obszary to jedne z najchłodniejszych miejsc w Układzie Słonecznym. Na wodę możemy liczyć przede wszystkim w głębokich kraterach znajdujących się w pobliżu biegunów. Tam bowiem kąt padania promieni słonecznych wynosi zaledwie 1,5 stopnia. Jednak nie zawsze tak było. Przed miliardami lat oś Księżyca była nachylona pod zupełnie innym kątem, różniącym się od obecnego może nawet o 77 stopni. Taka orientacja wystawiała zaś bieguny na działanie Słońca, eliminując wszelkie zacienione obszary, a co za tym idzie, odparowując znajdujący się tam lód.
      Wiemy, że Księżyc powstał przed około 4,5 miliardami lat w wyniku uderzenia w tworzącą się Ziemię planety wielkości Marsa. Od tego czasu migruje on coraz dalej od nasze planety. Początkowo znajdował się pod przemożnym wpływem sił pływowych Ziemi, obecnie większą rolę odgrywają siły pływowe Słońca i ta właśnie zmiana doprowadziła do zmiany orientacji osi Księżyca. Zasadnicze pytanie brzmi, kiedy do niej doszło. Jeśli wcześniej, to na Księżycu powinno być więcej lodu, jeśli zaś później, lodu będzie mniej.
      Dopiero w 2022 roku astronomowie z Obserwatorium Paryskiego rozwiązali stary problem niezgodności danych geochemicznych z fizycznym modelem oddziaływania sił pływowych. Schörghofer i Rufu skorzystali z pracy Francuzów i utworzyli udoskonalony model pokazujący zmiany osi Księżyca w czasie. To zaś pozwoliło mi stwierdzić, ile lodu może istnieć w obecnych stale zacienionych obszarach.
      Z ich obliczeń wynika, że najstarsze stale zacienione obszary utworzyły się nie więcej niż 3,94 miliarda lat temu. Są zatem znacznie młodsze, niż dotychczas sądzono, a to oznacza, że wody na Księżycu jest znacznie mniej. Nie możemy się już spodziewać, że istnieją tam warstwy czystego lodu o grubości od dziesiątków to setek metrów, mówi Schörghofer.
      Uczony dodaje jednak, że nie należy podchodzić do tych badań wyłącznie pesymistycznie. Dostarczają one bowiem dokładniejszych danych na temat miejsc, w których powinien znajdować się lód. Ponadto z wcześniejszych badań, które Schörghofer prowadził wraz z Paulem Hayne z University of Colorado i Odedem Aharonsonem z izraelskiego Instytut Weizmanna, wynika, że stale zacienionych obszarów jest więcej niż sądzono, a lód może znajdować się nawet w takich, które liczą sobie zaledwie 900 milionów lat. Wnioski płynące z badań są więc takie, że lodu na Księżycu jest znacznie mniej, ale jest on w większej liczbie miejsc.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...