Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zaobserwowane przez Teleskop Webba galaktyki mogą przeczyć teoriom kosmologicznym

Rekomendowane odpowiedzi

Teleskop Kosmiczny Jamesa Webba prawdopodobnie znalazł galaktyki, których istnienie przeczy standardowemu modelowi kosmologicznemu. Wydaje się, że są one zbyt masywne jak na czas swoich narodzin.

Astronomowie z The University of Texas at Austin informują na łamach Nature Astronomy, że sześć z najstarszych i najbardziej masywnych galaktyk zaobserwowanych przez JWST wydaje się przeczyć najbardziej rozpowszechnionym poglądom obowiązującym w kosmologii. Naukowcy szacują bowiem, że galaktyki te narodziły się w ciągu 500–700 milionów lat po Wielkim Wybuchu, a ich masa wynosi ponad 10 miliardów mas Słońca. Jedna z nich wydaje się nawet równie masywna co Droga Mleczna, a jest od niej o miliardy lat młodsza.

Jeśli szacunki dotyczące masy są prawidłowe, to wkraczamy na nieznane terytorium. Wyjaśnienie tego zjawiska będzie wymagało dodania czegoś całkowicie nowego do teorii formowania się galaktyk lub modyfikacji poglądów kosmologicznych. Jednym z najbardziej niezwykłych wyjaśnień byłoby stwierdzenie, że wkrótce po Wielkim Wybuchu wszechświat rozszerzał się szybciej, niż sądzimy. To jednak mogłoby wymagać dodania nowych sił i cząstek, mówi profesor Mike Boylan-Kolchin, który kierował zespołem badawczym. Co więcej, by tak masywne galaktyki uformowały się tak szybko, w gwiazdy musiałoby zamienić się niemal 100% zawartego w nich gazu. Zwykle w gwiazdy zamienia się nie więcej niż 10% gazu galaktyki. I o ile konwersja 100% gazu w gwiazdy mieści się w teoretycznych przewidywaniach, to taki przypadek wymagałby zupełnie innych zjawisk, niż obserwujemy, dodaje uczony.

Dane, jakich dostarczył JWST, mogą postawić astronomów przed poważnym problemem. Jeśli bowiem masy i wiek wspomnianych galaktyk zostaną potwierdzone, mogą być potrzebne fundamentalne zmiany w obowiązującym modelu kosmologicznym. Takie, które dotkną też ciemnej materii i ciemnej energii. Jeśli istnieją inne, szybsze sposoby formowania się galaktyk, albo też więcej materii było dostępnej we wczesnym wszechświecie, konieczna będzie radykalna zmiana poglądów.

Oceny wieku i masy wspomnianych 6 galaktyk to wstępne szacunki. Następnym etapem prac powinno być przeprowadzenie badań spektroskopowych. W ich trakcie może się np. okazać, że czarne dziury w centrach galaktyk tak bardzo podgrzewają otaczający je gaz, że galaktyki są jaśniejsze, zatem wydają się bardziej masywne niż w rzeczywistości. Nie można też wykluczyć, że galaktyki tak naprawdę są młodsze, ale znajdujący się pomiędzy nami a nimi pył zmienia kolor docierającego z nich światła tak, iż jest ono bardziej przesunięte ku czerwieni, zatem wydaje się dochodzić z większej odległości, a zatem z młodszych galaktyk.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dodałbym jeszcze jedną tezę. Jądra kondensacji. Załóżmy że w obłoku wodoru z którego w miała się uformować galaktyka były już obecne "cośki": gruz, pył, wraki jednostek szturmowych armii wymarłej, lub nie ... cywilizacji. (przegiąłem ?).

... albo Titan A.E. (animacja z 2000 roku) Mieli tam taki grawitacyjny wihajster przerabiający stertę kosmicznego lodowo kamiennego gruzu w zdatną do zasiedlenia planetę. No czemu nie miało by się udać z gwiazdami?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Jądra kondensacji."

Wodorek litu? Kondensuje w temperaturze 1000C...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
      Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
      Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
      Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
      Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
      Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
      Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
      O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
      Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 1929 roku Edwin Hubble odkrył, że najbardziej odległe galaktyki oddalają się od Ziemi szybciej, niż galaktyki pobliskie. Tym samym dowiedzieliśmy się, że wszechświat się rozszerza. Jednak tempo jego rozszerzania stanowi jedną z najważniejszych zagadek kosmologicznych. Spór w tej kwestii trwa od dziesięcioleci. Naukowcy, korzystający z różnych, solidnych i wielokrotnie sprawdzonych, metod pomiaru otrzymują dwa różne wyniki. Być może jednak pogodzą ich nowe badania, których autorzy – wykorzystując Teleskop Webba – zmierzyli tempo ucieczki 10 pobliskich galaktyk i uzyskali nową wartość rozszerzania się wszechświata.
      Tempo rozszerzania się wszechświata – stała Hubble'a – mierzone jest dwiema głównymi metodami. Jedna z nich to pomiar promieniowania mikrofalowego tła, czyli światła, które pozostało z Wielkiego Wybuchu. Badanie tą metodą pokazuje, że wszechświat rozszerza się w tempie 67,4 km/s/Mpc (kilometra na sekundę na megaparsek). Druga metoda wykorzystuje do pomiaru świece standardowe, obiekty o znanej jasności. Im są dalej, tym słabsze dociera z nich światło, co pozwala na pomiary odległości i prędkości oddalania się. Pomiary tą metodą dają wynik 74 km/s/Mpc. Oba wyniki na tyle się różnią, że skłoniły naukowców do przypuszczeń, iż standardowy model kosmologiczny – Lambda-CDM – może wymagać zmiany. Zwraca się uwagę, że jedna z tych metod bada mikrofalowe promieniowanie tła, zatem najwcześniejsze ślady wszechświata, a druga współczesne galaktyki, może więc w międzyczasie doszło do jakiejś istotnej zmiany, której Lambda-CDM nie uwzględnia.
      Zagadnieniu temu przyjrzała się kosmolog Wendy Freedman z University of Chicago, która specjalizuje się w badaniu tempa rozszerzania wszechświata metodą świec standardowych. Wraz ze swoim zespołem wykorzystała Teleskop Webba do przyjrzenia się 10 pobliskim galaktykom. Naukowcy wykorzystali przy tym trzy różne metody badawcze, które posłużyły im do wzajemnego sprawdzania uzyskanych wyników. W pierwszej z nich do pomiarów użyli cefeid, niezwykle jasnych gwiazd, które regularnie pulsują, zmieniając swoją jasność. Drugą z metod była TRGB (tip of the red giant branch - wierzchołek gałęzi czerwonych olbrzymów), która wykorzystuje fakt, że gwiazdy o niskiej masie osiągają pewną maksymalną jasność. W ostatniej metodzie, JAGB (J-Region Asymptotic Giant Branch), wykorzystano gwiazdy węglowe, których jasność i kolor są stałe w bliskiej podczerwieni. To pierwsze prace, w czasie których użyto wszystkich tych trzech metod do zbadania tych samych galaktyk.
      Wszystkie trzy metody, po uwzględnieniu marginesu błędu, dały wartość bliższą wartości uzyskiwanej z badania mikrofalowego promieniowania tła. Odległości mierzone metodami TRGB i JAGB zgadzały się z dokładnością do 1%, ale różniły się od odległości z cefeid o 2,5–4 procent. Średnia wartość stałej Hubble'a uzyskana z tych dwóch pierwszych metod wynosi 69,03+/-1,75 km/s/Mpc, czytamy w artykule udostępnionym na łamach arXiv. Również dane z pomiarów cefeid są zbliżone do tych wartości i mieszczą się w marginesach błędu.
      Pomiary dokonane przez uczonych z Chicago mogą wskazywać, że nie potrzebujemy poprawek do modelu kosmologicznego, a różnica w uzyskiwanych dotychczas wynikach to skutek błędów systematycznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po kilkudziesięciu latach poszukiwań astronomowie znaleźli gwiazdy w Strumieniu Magellanicznym. Ten strumień gazowych chmur o dużej prędkości rozciąga się na 600 000 lat świetlnych i znajduje w odległości około 180 000 lat świetlnych od Drogi Mlecznej. Zauważono go po raz pierwszy z 1965 roku, a w 1972 stwierdzono, że łączy on Wielki i Mały Obłok Magellana i jest z nimi powiązany. Pomimo tego, że – wedle obowiązujących teorii naukowych – w strumieniu powinny znajdować się gwiazdy, dotychczas jednoznacznie ich nie odnaleziono. Aż do teraz.
      Vedant Chandra z Center for Astrophysics Harvard & Smithsonian oraz naukowcy z USA i Australii zaobserwowali 13 czerwonych olbrzymów położonych w odległości od 200 do 325 tysięcy lat świetlnych od Ziemi, które mają ten sam moment pędu i podobny skład chemiczny, co gaz w Strumieniu.
      Odkrycia dokonano dzięki analizie katalogu Gaia, w którym znajdują się informacje o ponad miliardzie gwiazd. Naukowcy najpierw odrzucili gwiazdy, które prawdopodobnie należą do Drogi Mlecznej, następnie zaś skupili się na gwiazdach o składzie chemicznym podobnym do składu Strumienia.
      Po raz pierwszy obserwujemy gwiazdy towarzyszące Strumieniowi. To nie tylko rozwiązuje zagadkę samych gwiazd, ale również zdradza nam wiele użytecznych informacji na temat ruchu samego gazu, wyjaśnia Chandra. Obserwacje nowo odkrytych gwiazd pozwolą nie tylko bardziej precyzyjnie określić pozycję i ruch Strumienia, ale również zbadać ruch Obłoków Magellana, galaktyk satelitarnych Drogi Mlecznej.
      Połowa ze zidentyfikowanych gwiazd jest bogata w metale – tutaj trzeba przypomnieć, że metalami w astronomii określa się pierwiastki cięższe od wodoru i helu – i znajduje się bliżej Strumienia, druga połowa jest uboga w metale, te gwiazdy są bardziej rozproszone. Chandra i jego zespół uważają, że różnica ta bierze się z faktu, że gwiazdy bogate w metale uformowały się niedawno w Strumieniu Magellanicznym, natomiast gwiazdy ubogie w metale to populacja wyrzucona z obrzeży Małego Obłoku Magellana podczas interakcji pomiędzy oboma Obłokami. Zdaniem komentujących odkrycie naukowców, gwiazdy o niskiej metaliczności mogą nie być częścią Strumienia, ale są w jakiś sposób z nim powiązane.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki Teleskopowi Webba (JWST) naukowcy odkryli najbardziej odległe od Ziemi złożone molekuły organiczne. Zostały one zarejestrowane w galaktyce znajdującej się ponad 12 miliardów lat świetlnych od Drogi Mlecznej. Profesor Joaquin Vieira i świeżo upieczony magistrant Kedar Phadke połączyli siły z uczonymi z Texas A&M University oraz międzynarodową grupą badawczą, by odróżnić sygnały generowane w podczerwieni przez ziarna pyłu od sygnałów molekuł węglowodorów.
      Pył absorbuje i ponownie emituje około połowy promieniowania gwiazd we wszechświecie, przez co promieniowanie podczerwone z odległych obiektów jest niezwykle słabe lub w ogóle niewykrywalne przez naziemne teleskopy, wyjaśnia Vieira. Dzięki olbrzymim możliwościom badawczym Teleskopu Webba oraz wykorzystaniu zjawiska soczewkowania grawitacyjnego można było jednak obserwować odległą galaktykę i badać jej spektrum emisji.
      Badacze skierowali Teleskop Webba na obiekt SPT0418-47, który został wykryty przez South Pole Telescope i zidentyfikowany jako przesłonięta pyłem galaktyka. Odkrycia udało się dokonać dzięki temu, że doszło do soczewkowania grawitacyjnego, które powiększyło SPT0418-47 o 30-35 razy. Gdyby nie soczewkowanie grawitacyjne i dostęp do JWST, nigdy nie bylibyśmy w stanie analizować światła tej galaktyki z powodu zasłaniającego ją pyłu, mówi Vieira.
      Dane spektroskopowe uzyskane przez Teleskop Webba wskazują, że SPT0418-47 zawiera ciężkie pierwiastki, co wskazuje, że powstały w niej i zginęły liczne gwiazdy. Jednak najbardziej interesujące były sygnatury wielopierścieniowych węglowodorów aromatycznych (PAH). Na Ziemi związki te powstają m.in. w silnikach spalinowych czy w wyniku pożarów lasów. Molekuły te uznawane są cegiełki budujące najwcześniejsze formy życia.
      Badania te pokazują nam, że jesteśmy w stanie obserwować struktury przesłonięte drobnym pyłem. Regiony, których przed epoką JWST nie mogliśmy badać. Dane spektroskopowe zdradzają nam skład atomowy i molekularny galaktyk, dostarczając ważnych informacji na temat ich powstawania i ewolucji, dodaje Phadke. Naukowcy przyznają, że nie spodziewali się zaobserwowania molekuł organicznych z tak olbrzymiej odległości. Ich zdaniem to pierwszy krok na drodze ku przyszłym przełomowym obserwacjom.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...