Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zapomniane eksperymenty Leonarda da Vinci. Włoch badał grawitację jako formę przyspieszenia

Rekomendowane odpowiedzi

Inżynierowie z California Institute of Technology (Caltech) odkryli, że Leonardo da Vinci rozumiał i badał grawitację. Zajmował się więc tym przedmiotem na setki lat przed Newtonem. W artykule opublikowanym na łamach pisma Leonardo naukowcy przeanalizowali jeden z dzienników da Vinciego i wykazali, że słynny uczony zaprojektował eksperymenty dowodzące, że grawitacja jest formą przyspieszenia o określił stałą grawitacji z 97-procentową dokładnością.

Żyjący na przełomie średniowiecza i renesansu uczony wyprzedzał swoją epokę w wielu dziedzinach. Także, jak się okazuje, z dziedzinie badań nad grawitacją. Sto lat później grawitacją zajmował się Galileusz, a prawo powszechnego ciążenia zostało sformułowane przez Newtona w 170 lat po śmierci Leonardo. Tym, co przede wszystkim ograniczało badania słynnego Włocha był brak odpowiednich narzędzi. Nie był np. w stanie dokładnie mierzyć czasu, w jakim ciało spada na ziemię.

W 2017 roku profesor Mory Gharib omawiał ze studentami techniki wizualizacji przepływu cieczy wykorzystywane przez da Vinciego. W zdigitalizowanym i właśnie udostępnionym przez British Library Codex Arundel zauważył serię rysunków przedstawiających trójkąty tworzone przez podobne do ziaren piasku obiekty wysypujące się z dzbana. Moją uwagę zwrócił napis „Equatione di Moti” przy jednym z trójkątów równoramiennych. Zacząłem się zastanawiać, co Leonardo miał na myśli, wspomina uczony. Gharib poprosił o pomoc Chrisa Roha z Caltechu i Flavio Nocę z Uniwersytetu Nauk Stosowanych i Sztuki Zachodniej Szwajcarii (HES-SO). Wspólnie zasiedli do analizy diagramów.

Okazało się, że da Vinci opisał eksperyment, w którym dzban na wodę jest przesuwany w linii prostej równolegle do gruntu i wylatuje z niego albo woda albo piasek. Z notatek wynika, że włoski uczony zdawał sobie sprawę, iż wylatujący materiał nie spada ze stałą prędkością, ale przyspiesza oraz z tego, że gdy wyleci z dzbana, a zatem ten nie ma nań już wpływu, przestaje przyspieszać w kierunku horyzontalnym, a przyspiesza wyłącznie wertykalnie. Jeśli dzban przesuwa się ze stałą prędkością, linia tworzona przez wypadający materiał jest pozioma i nie tworzy się trójkąt. Gdy zaś przyspiesza ze stałą prędkością, linia opadającego materiału jest prosta, ale odchylona, tworząc trójkąt. W kluczowym diagramie da Vinci zauważa, że jeśli przyspieszenie dzbana jest równe przyspieszeniu opadającego materiału, tworzy się trójkąt równoramienny. To właśnie tam da Vinci napisał „Equatione di Moti” czyli „wyrównywanie ruchów”.

Da Vinci próbował opisać to przyspieszenie za pomocą matematyki. Naukowcy użyli modelowania komputerowego do sprawdzenia obliczeń wielkie uczonego i znaleźli błąd. Leonardo zmierzył się z tą kwestią i wyliczył, że droga spadającego obiektu była proporcjonalna do 2 do potęgi t (gdzie t reprezentuje czas), a powinna być proporcjonalna do t2, mówi Roh. To błąd, ale później zauważyliśmy, że swój błędny wzór wykorzystywał w prawidłowy sposób. "Nie wiemy, czy da Vinci prowadził kolejne eksperymenty, by dokładniej zbadać tę kwestię. Ale sam fakt, że zajmował się tym na początku XVI wieku pokazuje, jak bardzo w przyszłość wybiegał jego sposób myślenia, stwierdza Gharib.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Łaziki pracujące na Marsie czy Księżycu, mierzą się z wieloma problemami. Jednym z nich jest ryzyko utknięcia w grząskim gruncie. Gdy tak się stanie operatorzy podejmują serię delikatnych manewrów, by pojazd wydobyć. Nie zawsze się to udaje. Łazik Spirit zakończył misję jako stacjonarna platforma badawcza po tym, jak utknął w luźnym piasku. Czy takim wydarzeniom da się zapobiec? Inżynierowie z University of Wisconsin-Madison informują o znalezieniu poważnego błędu w procedurach testowania łazików. Jego usunięcie może spowodować, że pojazdy na Marsie i Księżycu będą narażone na mniejsze ryzyko.
      Błąd ten polega na przyjęciu zbyt optymistycznych i uproszczonych założeń co do tego, jak łaziki zachowują się poza Ziemią. Ważnym elementem testów naziemnych takich pojazdów jest sprawdzenie, w jaki sposób mogą się one poruszać po luźnym podłożu. Na Księżycu grawitacja jest 6-krotnie mniejsza niż na Ziemi, więc przez dekady, testując łaziki, naukowcy tworzyli prototypy o masie sześciokrotnie mniejszej niż łazik docelowy i testowali je na pustyni. Jednak ta metoda pomijała pewien istotny szczegół – wpływ grawitacji na piasek.
      Profesor Dan Negrut i jego zespół przeprowadzili symulacje, które wykazały, że Ziemia przyciąga ziarenka piasku silniej niż Mars czy Księżyc. Dzięki temu piasek na Ziemi jest bardziej zwarty. Jest mniejsze prawdopodobieństwo, że ziarna będą się pod nimi przesuwały. Jednak na Księżycu piasek jest luźniejszy, łatwiej się przemieszcza, więc obracające się koła trafiają na mniejszy opór. Przez to pojazdowi trudniej się w nim poruszać.
      Jeśli chcemy sprawdzić, jak łazik będzie sobie radził na Księżycu, musimy rozważać nie tylko wpływ grawitacji na pojazd, ale również wpływ grawitacji na piasek. Nasze badania pokazują, jak ważne są symulacje do badania możliwości jezdnych łazika na luźnym podłożu, wyjaśnia uczony.
      Uczeni dokonali swojego odkrycia podczas prac związanych z misją łazika VIPER, który ma trafić na Księżyc. We współpracy z naukowcami z Włoch stworzyli silnik Chrono, służący do symulacji zjawisk fizycznych, który pozwala na szybkie modelowanie złożonych systemów mechanicznych. I zauważyli istotne różnice pomiędzy wynikami testów VIPERA na Ziemi, a wynikami symulacji. Po przeanalizowaniu problemu znaleźli wspomniany błąd w procedurach testowych.
      Chrono to produkt opensource'owy, z którego skorzystały już setki firm i organizacji. Pozwala on lepiej zrozumieć najróżniejsze złożone mechanizmy, od mechanicznych zegarków po czołgi jeżdżące poza utwardzonymi drogami.
      Źródło: A Study Demonstrating That Using Gravitational Offset to Prepare Extraterrestrial Mobility Missions Is Misleading

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W XV wieku książę Mediolanu Franciszek I Sforza, pierwszy władca z dynastii Sforzów, wybudował na pozostałościach XIV-wiecznych fortyfikacji Castello Sforzesco. Z czasem, w XVI i XVII wieku zamek Sforzów stał się jedną z największych twierdz w Europie. Od wieków krążą pogłoski, wspierane przez źródła historyczne i rysunki Leonarda da Vinci, o tajnych przejściach prowadzących z zamku. Naukowcy z Politechniki w Mediolanie wykorzystali nowoczesne techniki, by legendy te zweryfikować.
      Porta Giovia została wybudowana przez Rzymian prawdopodobnie wraz z murami obronnymi po tym, jak Juliusz Cezar podniósł Mediolanum do rangi municipium w 49 roku. W roku 1162 brama wraz z miastem i rzymskimi murami została zniszczona przez wojska cesarza Fryderyka Barbarossy. W 1288 roku w dziele „De magnalibus Mediolani” Bonvesin de la Riva wymienił ją wśród inncyh bram miejskich. Zatem wówczas jeszcze były widoczne jej pozostałości. Zniknęły one w latach 1358–1368, gdy na Rocca Giovia rządzący Mediolanem ród Viscontich wybudował Zamek Porta Giovia. Zamek ten został zburzony podczas krótkotrwałej, istniejącej niecałe 3 lata, Republiki Ambrozjańskiej. Po jej upadku władza przeszła w ręce Franciszka I Sforzy, a ten na ruinach Zamku Porta Giovia rozpoczął budowę Castello Sforzesco.
      Ghirlanda była zewnętrznym murem obronnym chroniącym północną część Zamku Porta Giovia. Franciszek Sforza odbudował zrujnowaną Ghirlandę i wzmocnił ją dwiema okrągłymi wieżami. Ghirlanda została zburzona w 1893 roku, do dzisiaj pozostały z niej fragmenty malowniczych ruin w parku.
      Rysunki Leonarda, na których widać Ghirlandę i tajne tunele od dawna pobudzają wyobraźnię. Czy rzeczywiście z Castello Sforzesco prowadził tajne tunele? Źródła historyczne wspominają, że Ludvik Sforza (Ludovico il Moro) miał zbudować tunel prowadzący z zamku do bazyliki Santa Maria delle Grazie, by móc odwiedzać grób Beatrycze d'Este, jego żony, która zmarła w przy porodzie w wieku 22 lat. Beatrycze była jedną z najważniejszych kobiet renesansu. Jej portret znajdziemy m.in. na „Ostatniej wieczerzy” da Vinciego, która znajduje się w bazylice.
      Naukowcy z Mediolanu, wykorzystując georadary i skanera laserowe potwierdzili, że pod Castello Sforzesco znajdują się liczne tajne przejścia i puste miejsca. Celem badań jest stworzenie cyfrowej wersji Castello, która pozwoli zobaczyć cały zamek i badać jego niewidoczne części. Na tym jednak nie koniec. Model zostanie zintegrowany z rzeczywistością rozszerzoną i udostępniony turystom, dzięki czemu będą mogli doświadczyć wirtualnego spaceru po tajnych tunelach pod zamkiem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.
      Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.
      Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.
      Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa naukowców z Czech, USA, Kanady, Niemiec i Włoch opisała grupę obiektów w przestrzeni kosmicznej, która nazwała „ciemnymi kometami”. Znajdują się one na granicy pomiędzy kometami a asteroidami. Zdaniem badaczy, wydobywa się z nich gaz, jednak w takich ilościach, że nie widać go przez teleskopy. Jednak skutki oddziaływania tego gazu są widoczne, gdyż te pozorne asteroidy czasami przyspieszają w sposób, jakiego nie da się wytłumaczyć oddziaływaniem grawitacyjnym.
      Ogrzewane przez Słońce komety emitują gaz i pył. Może z nich uchodzić nawet 10 kilogramów materiału na sekundę. Odbija on promienie słoneczne i jest widoczny jako koma. Asteroidy, składające się głównie z materiału skalnego, nie pozostawiają za sobą komy.
      Uczeni zaobserwowali jednak obiekty, które wyglądają jak asteroidy, ale czasami przyspieszają bez widocznego powodu. Większość z tych obiektów ma nie więcej niż kilkadziesiąt metrów średnicy i znajdują się w pobliżu Ziemi. Naukowcy sądzą, że te okresowe zmiany prędkości są spowodowane emisją materiału. Jest ona minimalna, zaledwie 0,0001 grama na sekundę, więc nie można tego materiału zobaczyć, ale to wystarczająco dużo, by od czasu do czasu nadawać dodatkowe przyspieszenie asteroidom.
      Uczeni mówią, że dotychczas „ciemne komety” nie zostały odkryte, gdyż to niewielkie obiekty, a żeby zaobserwować ich okresowe przyspieszanie trzeba wielu miesięcy lub lat obserwacji. Nie można wykluczyć, że w Układzie Słonecznym może istnieć cała klasa słabo aktywnych komet.
      Badania, w których udział biorą m.in. Davide Farnocchia z Jet Propulsion Laboratory, Petr Pravec z Czeskiej Akademii Nauk czy Olivier R. Hainaut z Europejskiego Obserwatorium Południowego, zostały zainspirowane obiektem 1I/2017 Oumuamua, który przybył do Układu Słonecznego z przestrzeni międzygwiezdnej. Początkowo sądzono, że to asteroida, jednak gdy okazało się, że Oumuamua przyspiesza, uznano ją z kometę.
      Jedynym sposobem, by sprawdzić hipotezę o istnieniu „ciemnych komet” jest przeprowadzenie badań na miejscu. Na szczęście jeden z obserwowanych obiektów, 1998 KY26, został wybrany jako cel misji badawczej japońskiej sondy. Odwiedzi ona tę asteroidę w 2031 roku. Wówczas przekonamy się, czy rzeczywiście w Układzie Słonecznym istnieją „ciemne komety”.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W CERN zakończono najbardziej precyzyjne w historii eksperymenty, których celem było sprawdzenie czy materia i antymateria reagują tak samo na oddziaływanie grawitacji. Trwające 1,5 roku badania z wykorzystaniem protonów i antyprotonów przeprowadzili specjaliści z eksperymentu BASE (Baryon Antibaryon Symmetry Experiment).
      Naukowcy zmierzyli stosunek ładunku do masy protonu i antyprotonu z dokładnością 16 części na bilion. To najbardziej precyzyjny ze wszystkich testów symetrii materii i antymaterii przeprowadzony na cząstkach złożonych z trzech kwarków, zwanych barionami, i ich antycząstkach, mówi Stefan Ulmer, rzecznik prasowy BASE.
      Zgodnie z Modelem Standardowym cząstki i antycząstki mogą się od siebie różnić, jednak większość właściwości, szczególnie ich masa, powinno być identycznych. Znalezienie różnicy masy pomiędzy protonami a antyprotonami lub też różnicy w ich stosunku ładunku do masy, oznaczałoby złamanie podstawowej symetrii Modelu Standardowego, symetrii CPT. Byłby to również dowód na znalezienie fizyki wykraczającej poza opisaną Modelem Standardowym.
      Istnienie takiej różnicy mogłoby doprowadzić do wyjaśnienia, dlaczego wszechświat składa się głównie z materii, mimo że podczas Wielkiego Wybuchu powinny powstać takie same ilości materii i antymaterii. Różnice pomiędzy cząstkami materii i antymaterii zgodne z Modelem Standardowym, są o rzędy wielkości zbyt małe, by wyjaśnić obserwowaną nierównowagę.
      Naukowcy z BASE wykorzystali podczas swoich pomiarów antyprotony i jony wodoru, które służyły jako ujemnie naładowane przybliżenia protonów. Umieszczono je w tzw. pułapce Penninga. Badania prowadzono pomiędzy grudniem 2017 roku a majem 2019. Później przystąpiono do opracowywania wyników, a po zakończeniu prac w najnowszym numerze Nature poinformowano o rezultatach.
      Po uwzględnieniu różnic pomiędzy jonami wodoru a protonami okazało się, że stosunek ładunku do masy protonu jest z dokładnością do 16 części na miliard identyczny ze stosunkiem ładunku do masy antyprotonu. To czterokrotnie bardziej dokładne obliczenia niż wszystko, co udało się wcześniej uzyskać, mówi Stefan Ulmer. Aby dokonać tak precyzyjnych pomiarów musieliśmy najpierw znacznie udoskonalić nasze narzędzia. Badania przeprowadziliśmy w czasie, gdy urządzenia wytwarzające antymaterię były nieczynne. Wykorzystaliśmy więc magazyn antyprotonów, w którym mogą być one przechowywane przez lata, dodaje.
      Prowadzenie eksperymentów w pułapce Penninga w czasie, gdy urządzenia wytwarzające antymaterię nie działają, pozwala na uzyskanie idealnych warunków, gdyż nie występują zakłócające badania pola magnetyczne generowane przez „fabrykę antymaterii”.
      Naukowcy z BASE nie ograniczyli się tylko do niespotykanie precyzyjnego porównania protonów i antyprotonów. Przeprowadzili też testy słabej zasady równoważności. Wynika ona z teorii względności i głosi, że zachowanie wszystkich obiektów w polu grawitacyjnym jest niezależne od ich właściwości, w tym masy. Oznacza to, że jeśli pominiemy inne siły – jak np. siłę tarcia – reakcja wszystkich obiektów na oddziaływanie grawitacji jest taka sama. Przykładem może być tutaj piórko i młotek, które w próżni powinny opadać z tym samym przyspieszeniem.
      Orbita Ziemi wokół Słońca ma kształt elipsy, co oznacza, że obiekty uwięzione w pułapce Penninga będą odczuwały niewielkie zmiany oddziaływania grawitacyjnego. Okazało się, że zarówno proton i antyproton identycznie reagują na te zmiany. Uczeni z BASE potwierdzili, że słaba zasada równoważności odnosi się zarówno do materii jak i antymaterii z dokładnością około 3 części na 100.
      Ulmer podkreśla, że uzyskana w tym eksperymencie precyzja jest podobna do założeń eksperymentu, w ramach których CERN chce badać antywodór podczas spadku swobodnego w polu grawitacyjnym Ziemi. BASE nie prowadziło eksperymentu ze swobodnym spadkiem antymaterii w polu grawitacyjnym Ziemi, ale nasze pomiary wpływu grawitacji na antymaterię barionową są co do założeń bardzo podobne do planowanego eksperymentu. To wskazuje, że w dopuszczonym zakresie niepewności nie znaleźliśmy żadnych anomalii w interakcjach pomiędzy antymaterią a grawitacją.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...