Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Zapomniane eksperymenty Leonarda da Vinci. Włoch badał grawitację jako formę przyspieszenia
dodany przez
KopalniaWiedzy.pl, w Humanistyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Politechnika Wrocławska koordynuje prace nad wykorzystującą siłę grawitacji nowatorską metodą przechowywania energii. Współfinansowany przez Unię Europejską projekt „GrEnMine – Gravitational Energy storage in the post-Mine areas” ma za zadanie wspierać system elektroenergetyczny korzystający z odnawialnych źródeł energii. Demonstracyjna instalacja powstanie zaś w Kopalni Węgla Brunatnego Turów. Zespół z Wrocławia, na czele którego stoi profesor Przemysław Moczko, otrzymał milion euro na opracowanie koncepcji, obliczenia, symulacje i stworzenie systemu RM-GES (Rail-Mounted Gravitational Energy Storage).
Najbardziej znaną i najpowszechniej stosowaną metodą grawitacyjnych magazynów energii są elektrownie szczytowo-pompowe. Gdy w sieci jest nadmiar energii, woda jest pompowana do wyżej położonego zbiornika, gdy zaś potrzebna jest dodatkowa energia, woda jest spuszczana i napędza turbinę. Projekt GrEnMine wykorzystuje podobną zasadę. Przy nadwyżce energii w sieci masę się unosi, gdy chcemy wykorzystać zgromadzoną w ten sposób energię, opuszczamy masę. Jeden z pomysłów zakłada wykorzystanie mechanizmu dźwigu podnoszącego dużą masę na wysokość nawet 100 metrów. Elementem przetwarzającym zgromadzoną energię potencjalną na prąd elektryczny może być generator z przemiennikiem częstotliwości.
Odnawialne źródła energii (OZE) odgrywają coraz większą rolę w produkcji energii na całym świecie. Jeszcze w 2015 roku ze źródeł odnawialnych pochodziło ok. 24% energii elektrycznej używanej na świecie. Obecnie ze źródeł odnawialnych świat produkuje 32% energii. Wzrosty widać we wszystkich najważniejszych regionach. Na przykład w 2022 roku w USA udział źródeł odnawialnych w produkcji energii energetycznej wynosił 21,4%, co oznaczało wzrost o 161% w porównaniu z rokiem 2000. W Chinach w roku 2022 było to 30,2% (wzrost o 82%). W Polsce zaś udział źródeł odnawialnych w produkcji energii elektrycznej w 2022 roku wynosił 21,1%, czyli o 1219% więcej niż w roku 2000.
Im większy udział mają OZE w produkcji energii, tym większym problemem staje się ich niestabilność i nieprzewidywalność. Konieczne jest przechowywanie energii w czasach jej nadpodaży i jej odzyskiwanie, gdy popyt jest większy.
Magazynowanie energii jest bardzo ważnym wyzwaniem w dobie zwiększającego się wykorzystania odnawialnych, mniej stabilnych źródeł energii. Zadanie, którego się podjęliśmy, jest złożone i wymaga precyzyjnych obliczeń, symulacji, konstrukcji odpornych na ekstremalne obciążenia. Cały projekt to także sposób na nadanie nowej funkcji terenom, które przez dekady służyły wydobyciu. Teraz mogą znów służyć gospodarce, chociaż już w inny sposób – mówi prof. Moczko.
Projekt potrwa do czerwca 2027 roku. Ma on zaowocować powstaniem gotowej instalacji demonstracyjnej oraz skalowalnym oodelem wdrożeniowym, dzięki któremu możliwe będzie zastosowanie opracowanego rozwiązania w całej Europie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Łaziki pracujące na Marsie czy Księżycu, mierzą się z wieloma problemami. Jednym z nich jest ryzyko utknięcia w grząskim gruncie. Gdy tak się stanie operatorzy podejmują serię delikatnych manewrów, by pojazd wydobyć. Nie zawsze się to udaje. Łazik Spirit zakończył misję jako stacjonarna platforma badawcza po tym, jak utknął w luźnym piasku. Czy takim wydarzeniom da się zapobiec? Inżynierowie z University of Wisconsin-Madison informują o znalezieniu poważnego błędu w procedurach testowania łazików. Jego usunięcie może spowodować, że pojazdy na Marsie i Księżycu będą narażone na mniejsze ryzyko.
Błąd ten polega na przyjęciu zbyt optymistycznych i uproszczonych założeń co do tego, jak łaziki zachowują się poza Ziemią. Ważnym elementem testów naziemnych takich pojazdów jest sprawdzenie, w jaki sposób mogą się one poruszać po luźnym podłożu. Na Księżycu grawitacja jest 6-krotnie mniejsza niż na Ziemi, więc przez dekady, testując łaziki, naukowcy tworzyli prototypy o masie sześciokrotnie mniejszej niż łazik docelowy i testowali je na pustyni. Jednak ta metoda pomijała pewien istotny szczegół – wpływ grawitacji na piasek.
Profesor Dan Negrut i jego zespół przeprowadzili symulacje, które wykazały, że Ziemia przyciąga ziarenka piasku silniej niż Mars czy Księżyc. Dzięki temu piasek na Ziemi jest bardziej zwarty. Jest mniejsze prawdopodobieństwo, że ziarna będą się pod nimi przesuwały. Jednak na Księżycu piasek jest luźniejszy, łatwiej się przemieszcza, więc obracające się koła trafiają na mniejszy opór. Przez to pojazdowi trudniej się w nim poruszać.
Jeśli chcemy sprawdzić, jak łazik będzie sobie radził na Księżycu, musimy rozważać nie tylko wpływ grawitacji na pojazd, ale również wpływ grawitacji na piasek. Nasze badania pokazują, jak ważne są symulacje do badania możliwości jezdnych łazika na luźnym podłożu, wyjaśnia uczony.
Uczeni dokonali swojego odkrycia podczas prac związanych z misją łazika VIPER, który ma trafić na Księżyc. We współpracy z naukowcami z Włoch stworzyli silnik Chrono, służący do symulacji zjawisk fizycznych, który pozwala na szybkie modelowanie złożonych systemów mechanicznych. I zauważyli istotne różnice pomiędzy wynikami testów VIPERA na Ziemi, a wynikami symulacji. Po przeanalizowaniu problemu znaleźli wspomniany błąd w procedurach testowych.
Chrono to produkt opensource'owy, z którego skorzystały już setki firm i organizacji. Pozwala on lepiej zrozumieć najróżniejsze złożone mechanizmy, od mechanicznych zegarków po czołgi jeżdżące poza utwardzonymi drogami.
Źródło: A Study Demonstrating That Using Gravitational Offset to Prepare Extraterrestrial Mobility Missions Is Misleading
« powrót do artykułu -
przez KopalniaWiedzy.pl
W XV wieku książę Mediolanu Franciszek I Sforza, pierwszy władca z dynastii Sforzów, wybudował na pozostałościach XIV-wiecznych fortyfikacji Castello Sforzesco. Z czasem, w XVI i XVII wieku zamek Sforzów stał się jedną z największych twierdz w Europie. Od wieków krążą pogłoski, wspierane przez źródła historyczne i rysunki Leonarda da Vinci, o tajnych przejściach prowadzących z zamku. Naukowcy z Politechniki w Mediolanie wykorzystali nowoczesne techniki, by legendy te zweryfikować.
Porta Giovia została wybudowana przez Rzymian prawdopodobnie wraz z murami obronnymi po tym, jak Juliusz Cezar podniósł Mediolanum do rangi municipium w 49 roku. W roku 1162 brama wraz z miastem i rzymskimi murami została zniszczona przez wojska cesarza Fryderyka Barbarossy. W 1288 roku w dziele „De magnalibus Mediolani” Bonvesin de la Riva wymienił ją wśród inncyh bram miejskich. Zatem wówczas jeszcze były widoczne jej pozostałości. Zniknęły one w latach 1358–1368, gdy na Rocca Giovia rządzący Mediolanem ród Viscontich wybudował Zamek Porta Giovia. Zamek ten został zburzony podczas krótkotrwałej, istniejącej niecałe 3 lata, Republiki Ambrozjańskiej. Po jej upadku władza przeszła w ręce Franciszka I Sforzy, a ten na ruinach Zamku Porta Giovia rozpoczął budowę Castello Sforzesco.
Ghirlanda była zewnętrznym murem obronnym chroniącym północną część Zamku Porta Giovia. Franciszek Sforza odbudował zrujnowaną Ghirlandę i wzmocnił ją dwiema okrągłymi wieżami. Ghirlanda została zburzona w 1893 roku, do dzisiaj pozostały z niej fragmenty malowniczych ruin w parku.
Rysunki Leonarda, na których widać Ghirlandę i tajne tunele od dawna pobudzają wyobraźnię. Czy rzeczywiście z Castello Sforzesco prowadził tajne tunele? Źródła historyczne wspominają, że Ludvik Sforza (Ludovico il Moro) miał zbudować tunel prowadzący z zamku do bazyliki Santa Maria delle Grazie, by móc odwiedzać grób Beatrycze d'Este, jego żony, która zmarła w przy porodzie w wieku 22 lat. Beatrycze była jedną z najważniejszych kobiet renesansu. Jej portret znajdziemy m.in. na „Ostatniej wieczerzy” da Vinciego, która znajduje się w bazylice.
Naukowcy z Mediolanu, wykorzystując georadary i skanera laserowe potwierdzili, że pod Castello Sforzesco znajdują się liczne tajne przejścia i puste miejsca. Celem badań jest stworzenie cyfrowej wersji Castello, która pozwoli zobaczyć cały zamek i badać jego niewidoczne części. Na tym jednak nie koniec. Model zostanie zintegrowany z rzeczywistością rozszerzoną i udostępniony turystom, dzięki czemu będą mogli doświadczyć wirtualnego spaceru po tajnych tunelach pod zamkiem.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.
Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.
Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.
Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Grupa naukowców z Czech, USA, Kanady, Niemiec i Włoch opisała grupę obiektów w przestrzeni kosmicznej, która nazwała „ciemnymi kometami”. Znajdują się one na granicy pomiędzy kometami a asteroidami. Zdaniem badaczy, wydobywa się z nich gaz, jednak w takich ilościach, że nie widać go przez teleskopy. Jednak skutki oddziaływania tego gazu są widoczne, gdyż te pozorne asteroidy czasami przyspieszają w sposób, jakiego nie da się wytłumaczyć oddziaływaniem grawitacyjnym.
Ogrzewane przez Słońce komety emitują gaz i pył. Może z nich uchodzić nawet 10 kilogramów materiału na sekundę. Odbija on promienie słoneczne i jest widoczny jako koma. Asteroidy, składające się głównie z materiału skalnego, nie pozostawiają za sobą komy.
Uczeni zaobserwowali jednak obiekty, które wyglądają jak asteroidy, ale czasami przyspieszają bez widocznego powodu. Większość z tych obiektów ma nie więcej niż kilkadziesiąt metrów średnicy i znajdują się w pobliżu Ziemi. Naukowcy sądzą, że te okresowe zmiany prędkości są spowodowane emisją materiału. Jest ona minimalna, zaledwie 0,0001 grama na sekundę, więc nie można tego materiału zobaczyć, ale to wystarczająco dużo, by od czasu do czasu nadawać dodatkowe przyspieszenie asteroidom.
Uczeni mówią, że dotychczas „ciemne komety” nie zostały odkryte, gdyż to niewielkie obiekty, a żeby zaobserwować ich okresowe przyspieszanie trzeba wielu miesięcy lub lat obserwacji. Nie można wykluczyć, że w Układzie Słonecznym może istnieć cała klasa słabo aktywnych komet.
Badania, w których udział biorą m.in. Davide Farnocchia z Jet Propulsion Laboratory, Petr Pravec z Czeskiej Akademii Nauk czy Olivier R. Hainaut z Europejskiego Obserwatorium Południowego, zostały zainspirowane obiektem 1I/2017 Oumuamua, który przybył do Układu Słonecznego z przestrzeni międzygwiezdnej. Początkowo sądzono, że to asteroida, jednak gdy okazało się, że Oumuamua przyspiesza, uznano ją z kometę.
Jedynym sposobem, by sprawdzić hipotezę o istnieniu „ciemnych komet” jest przeprowadzenie badań na miejscu. Na szczęście jeden z obserwowanych obiektów, 1998 KY26, został wybrany jako cel misji badawczej japońskiej sondy. Odwiedzi ona tę asteroidę w 2031 roku. Wówczas przekonamy się, czy rzeczywiście w Układzie Słonecznym istnieją „ciemne komety”.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.