Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Odkryli jedne z najgorętszych gwiazd we wszechświecie. Są 20-krotnie cieplejsze od Słońca
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Międzynarodowy zespół naukowców z Izraela, USA, Wielkiej Brytanii, Danii i Finlandii, znalazł dowody świadczące o tym, że gwiazda przetrwała spotkanie z supermasywną czarną dziurą. Do takich wniosków uczeni doszli, gdy niedawno zauważyli rozbłysk, który bardzo przypominał rozbłysk AT 2022dbl sprzed 700 dni. Ten wcześniejszy zaobserwowano dokładnie w tym samym miejscu, co późniejszy, a charakterystyki obu były niezwykle podobne. Badacze wysnuli więc wniosek, że oba rozbłyski spowodowało przejście tej samej gwiazdy w pobliżu czarnej dziury. A to oznacza, że gwiazda przetrwała pierwsze spotkanie.
Gdy gwiazda znajdzie się zbyt blisko supermasywnej czarnej dziury, jest rozrywana przez siły pływowe. Połowa jej masy trafia do czarnej dziury, połowa jest odrzucana. Astronomowie niejednokrotnie obserwowali rozbłyski, świadczące o rozerwaniu gwiazdy przez czarną dziurę. Takie obserwacje pozwalają poznać właściwości czarnych dziur i ich dysku akrecyjnego. Centralną czarną dziurę Drogi Mlecznej możemy badać wykorzystując w tym celu ruch pobliskich gwiazd. Jednak w odniesieniu do innych galaktyk naukowcy muszą polegać na rzadkich wysokoenergetycznych wydarzeniach, pozwalających w ogóle stwierdzić obecność czarnej dziury.
Szacuje się, że raz na 10 000 – 100 000 lat gwiazda może zbliżyć się do czarnej dziury tak blisko, że zostanie rozerwana. Wówczas połowa jej materiału opada na dziurę po spiralnej trajektorii. W bezpośrednim sąsiedztwie dziury opadająca materia osiąga niemal prędkość światła, rozgrzewa się i intensywnie promieniuje. Trwa to kilka tygodni lub miesięcy, dając astronomom okazję do badań.
Jednak wiele takich rozbłysków stanowi zagadkę, gdyż ich jasność i temperatura są znacznie niższe, że przewidują teorie. Dlatego naukowcy szukają alternatywnych wyjaśnień tego fenomenu. Niedawno grupa naukowa pracująca pod kierunkiem Uniwersytetu w Tel Awiwie, zidentyfikowała w danych obserwacyjnych rozbłysk, który bardzo przypominał i miał miejsce w tym samym miejscu co rozbłysk AT 2022dbl sprzed 700 dni. Uczeni wysunęli więc hipotezę, że pierwszy rozbłysk był spowodowany częściowym zniszczeniem gwiazdy przez siły pływowe czarnej dziury, a drugi rozbłysk to dowód na ponowną interakcję tej samej gwiazdy i dziury.
Pytanie brzmi, czy zaobserwujemy kolejny rozbłysk po mniej więcej dwóch latach, czyli na początku 2026 roku. Jeśli tak, to będzie oznaczało, że również drugi rozbłysk był wynikiem częściowego zniszczenia gwiazdy. Może więc i inne rozbłyski, których naturę specjaliści próbują wyjaśnić od dekady, nie są spowodowane przez całkowite zniszczenie gwiazdy, zastanawia się profesor Iair Arcavi z Tel Awiwu.
Źródło: The Double Tidal Disruption Event AT 2022dbl Implies that at Least Some “Standard” Optical Tidal Disruption Events Are Partial Disruptions
« powrót do artykułu -
przez KopalniaWiedzy.pl
Odkrycie nowej komety poruszyło środowisko astronomów, gdyż istnieje prawdopodobieństwo, że pochodzi ona spoza Układu Słonecznego. Jeśli tak, to jest ona drugim, po słynnym 1I/Oumuamua, obiekt, który odwiedził Układ Słoneczny.
Kometę odkrył 30 sierpnia 2019 roku Gienadij Borisow w obserwatorium MARGO na Krymie. Na razie oznaczono ją jako C/2019 Q4. Jeśli się potwierdzi, że pochodzi spoza Układu Słonecznego zostanie nazwany zgodnie z nomenklaturą stworzoną przy okazji Oumuamua, gdzie „I” oznacza „Interstellar” (Międzygwiezdny), a „1” jest liczbą porządkową przypisaną pierwszemu takiemu obiektowi.
C/2019 Q4 wciąż porusza się w kierunku Słońca, jednak wstępne badania trajektorii wskazują, że nie zbliży się do naszej gwiazdy na odległość mniejszą niż Mars, a do Ziemi podleci nie bliżej niż 300 milionów kilometrów.
Wkrótce po odkryciu komety używany przez NASA system Scout automatycznie zakwalifikował ją jako obiekt o możliwym pochodzeniu pozasłonecznym. Davide Farnocchia z należącego do NASA Center for Near-Earth Object Studies nawiązał współpracę z europejskim Near-Earth Object Coordination Center w celu wykonania dodatkowych obserwacji, a następnie przeanalizował je ze specjalistami z Minor Planet Center. Dzięki temu wiemy, że obecnie kometa znajduje się w odległości 420 milionów kilometrów od Słońca, a 8 grudnia bieżącego roku osiągnie peryhelium w odległości 300 milionów kilometrów.
Obecnie kometa porusza się z dużą prędkością, wynoszącą 150 000 km/h, co jest wartością znacznie wyższą od prędkości typowych komet okrążających Słońce i znajdujących się w takiej właśnie odległości. Ta wielka prędkość wskazuje, że kometa prawdopodobnie pochodzi spoza Układu Słonecznego oraz że go opuści i poleci w przestrzeń międzygwiezdną, mówi Farnocchia.
Eksperci wyliczyli też, że 26 października kometa przetnie płaszczyznę ekliptyki planet słonecznych pod kątem 40 stopni. C/2019 Q4 będzie widoczny jeszcze przez wiele miesięcy, jednak do jego obserwacji potrzebny będzie profesjonalny sprzęt. "Obiekt osiągnie najwięszą jasność w połowie grudnia i będzie go można obserwować za pomocą średniej wielkości urządzeń do kwietnia 2020 roku. Użytkownicy dużych profesjonalnych teleskopów będą mogli prowadzić obserwacje do października 2020", mówi Farnocchia.
Astronomowie z Uniwersytetu Hawajskiego określili wielkość jądra komety na 2–16 kilometrów średnicy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
TOI-6894 to gwiazda jakich wiele, nieduży czerwony karzeł o masie pięciokrotnie mniejszej od masy Słońca. Astronomowie nie spodziewają się, by wokół tak niewielkich gwiazd krążyły duże planety. Podczas ich formowania nie powinno być bowiem warunków do powstania wielkich planet. Jednak uczeni z University College London i University of Warwick dokonali zdumiewającego odkrycia, którego nie potrafią wytłumaczyć.
Wokół TOI-6894 krąży bowiem gazowy olbrzym TOI-6894b o średnicy większej od średnicy Saturna. To odkrycie będzie przełomem w zrozumieniu procesu formowania się gazowych olbrzymów, stwierdzają odkrywcy. Planeta TOI-6894b, zauważona dzięki Very Large Telescope, jest gazowym olbrzymem o niewielkiej gęstości. Przy średnicy większej od Saturna jej masa jest o połowę mniejsza niż olbrzyma z Układu Słonecznego. A jej gwiazda macierzysta to najmniej masywna gwiazda przy której zauważono dużą planetę.
To interesujące odkrycie. Nie rozumiemy, jak gwiazda o tak niskiej masie doprowadziła do powstania tak masywnej planety. To właśnie jeden z celów poszukiwań egzoplanet. Znajdując układy planetarne różne od Układu Słonecznego, możemy przetestować nasze modele i lepiej zrozumieć, jak powstał nas własny system planetarny, mówi doktor Vincent Van Eylen z UCL.
Zgodnie z najszerzej akceptowaną teorią dotyczącą formowania się gazowych olbrzymów, powstają one z dysku akrecyjnego wokół gwiazdy. Znajdujący się tam materiał gromadzi się, tworząc jądro, a gdy staje się ono wystarczająco masywne, zaczyna przyciągać gazy, tworzące atmosferę gazowego olbrzyma. Początkowo proces ten jest powolny, jednak gdy masa atmosfery dorównuje już masie jądra, dochodzi do gwałtownego zasysania gazu z dysku akrecyjnego, a im większa masa, tym proces ten jest szybszy.
Wedle tej teorii utworzenie się gazowych olbrzymów wokół gwiazd o niskiej masie jest trudniejsze, gdyż w ich dysku protoplanetarnym nie ma wystarczająco dużo materiału. Odkrycie TOI-6894b wskazuje, że taki model nie jest dokładny i potrzebne są alternatywne teorie. Być może formowanie się planety przebiegało stopniowo, jej jądro nie było nigdy tak masywne, by rozpoczął się proces gwałtownego zasysania gazu. Być może zaś planeta powstała w grawitacyjnie niestabilnym dysku, który rozpadł się na fragmenty i utworzył planetę. Naukowcy rozważyli oba te scenariusze i uznali, że żaden z nich nie wyjaśnia do końca powstania TOI-6894b. Kwestia więc pozostaje otwarta.
Innym interesującym aspektem nowo odkrytej planety jest temperatura jej atmosfery. Jest ona bowiem niezwykle chłodna. Większość pozasłonecznych gazowych olbrzymów to gorące Jowisze, których atmosfera ma temperaturę 1000–2000 kelwinów. Tymczasem temperatura TOI-6894b to zaledwie 420 kelwinów.
Źródło: A transiting giant planet in orbit around a 0.2-solar-mass host star, https://www.nature.com/articles/s41550-025-02552-4
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jezioro Żabińskie (Żabinki) na Pojezierzu Mazurskim w gminie Kruklanki dostarczyło niezwykle szczegółowych danych dotyczących temperatur w holocenie. Profesor Wojciech Tylmann i doktor Maurycy Żarczyński z Wydziału Oceanografii i Geografii Uniwersytetu Gdańskiego, we współpracy z kolegami z Niemiec i Szwajcarii przeprowadzili badania osadów jeziora, które pozwoliły im na zrekonstruowanie temperatur z ostatnich 10 800 lat.
Każda analizowana próbka reprezentowała okres 3 lat, dzięki czemu naukowcy byli w stanie śledzić dekadowe zmienności temperatury. Nasza rekonstrukcja jest jedną z nielicznych na świecie, która operuje tak wysoką rozdzielczością czasową, stwierdził prof. Tylmann.
Jezioro Żabińskie jest wyjątkowe. Odkładające się przez tysiąclecia warstwy osadów pozostały nienaruszone. Co więcej, wyraźnie widać w nich roczne przyrosty. Mamy tam naprzemienne warstwy jasną (odkłada się wiosną oraz latem i jest bogata w węglan wapnia) oraz ciemną (zdominowana przez szczątki organiczne, odkłada się jesienią i zimą). Dwie takie warstwy tworzą więc jeden rok.
Uczeni pobrali 20-metrowy rdzeń i skoncentrowali się na badaniu węglanu wapnia. Zainteresowali się właśnie nim, gdyż prowadzone od kilkunastu lat badania pokazały, że w Jeziorze Żabińskim istnieje zależność pomiędzy warunkami meteorologicznymi, a wytrącaniem się węglanu wapnia. Gdy spostrzeżenie to potwierdzono analizą za ostatnich 60 lat, stwierdzono, że węglan wapnia pozwoli zrozumieć historię jeziora.
Badania pokazały, że mediana wzrostu temperatur w ciągu ostatnich 90 lat wynosi 0,28 stopni Celsjusza na dekadę i jest najszybsza w całym badanym okresie. Obecne temperatury nie tylko są najwyższe od niemal 11 tysięcy lat, ale też mamy do czynienia z ich bezprecedensowo szybkim wzrostem.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Upały mogą przyspieszać biologiczne starzenie się u starszych osób, ostrzegają badacze z Uniwersytetu Południowej Kalifornii. Okazuje się bowiem, że osoby mieszkające w regionach, w których ma miejsce więcej bardzo gorących dni mają wyższy średni wiek biologiczny, niż mieszkańcy regionów, gdzie takie dni zdarzają się rzadziej.
Wiek biologiczny to wskaźnik, który pokazuje, jak nasz organizm funkcjonuje na poziomie molekularnym, komórkowym i systemowym. Jeśli nasz wiek biologiczny jest większy, niż wiek chronologiczny, jesteśmy narażeni na wyższe ryzyko zachorowań i śmierci. Nie od dzisiaj wiadomo, że ekstremalne fale upałów są powiązane z negatywnymi skutkami dla zdrowia i wyższym ryzykiem zgonu – szczególnie u osób starszych – jednak dotychczas nie było jasne, jak przekładają się one na wiek biologiczny.
Naukowcy z Kalifornii sprawdzili, jak zmienia się wiek biologiczny ponad 3600 Amerykanów. W badaniu wzięły osoby w wieku 56 lat i wyższym. Uczeni przez sześć kolejnych lat pobierali ich krew i badali zachodzące zmiany epigenetyczne. Analizowali je i określali wiek biologiczny każdego w zbadanych w momencie pobierania próbki. Następnie zmiany wieku biologicznego porównywali z danymi dotyczącymi wyjątkowo upalnych dni i ich liczby w miejscu zamieszkania badanych.
Uczeni odkryli, że istnieje silna korelacja pomiędzy liczbą wyjątkowo upalnych dni w roku, a przyspieszeniem biologicznego starzenia się. Było to widoczne także po wzięciu pod uwagę różnych czynników społecznych, ekonomicznych i demograficznych, jak styl życia, spożycie alkoholu, papierosów i inne czynniki.
Osoby mieszkające na obszarach, gdzie przez połowę roku temperatury sięgają 32 stopni Celsjusza lub więcej – jak na przykład mieszkańcy Phoenix w Arizonie – doświadczyły 14 dodatkowych miesięcy biologicznego starzenia się, w porównaniu z osobami, mieszkającymi na terenach, gdzie liczba takich upalnych dni jest mniejsza niż 10 w roku. Starzały się szybciej tylko z tego powodu, że mieszkały w bardziej ciepłym miejscu, mówi jedna z autorek badań, doktor Eun Young Choi.
Związek pomiędzy wyższymi temperaturami a szybszym biologicznym starzeniem się wykazały wszystkie trzy wykorzystane zegary epigenetyczne. Autorki podkreślają, że podczas badań wykorzystały indeks upału, którym posługuje się National Weather Service, gdyż bierze on pod uwagę nie tylko samą temperaturę powietrza, ale też jego wilgotność. Ma to olbrzymie znaczenie ze względu na tzw. temperaturę mokrego termometru. Niedawno okazało się bowiem, że upały są dla ludzi znacznie bardziej niebezpieczne, niż się dotychczas wydawało.
Naprawdę chodzi tutaj o kombinację temperatury i wilgotności. Szczególnie w odniesieniu do starszych osób, gdyż one nie pocą się w taki sam sposób jak młodsi. Z wiekiem nasza skóra coraz mniej efektywnie odprowadza nadmiar ciepła. Jeśli wówczas znajdujesz się w ciepłym wilgotnym miejscu, słabo się chłodzisz, wyjaśnia doktor Jennifer Ailshire.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.