Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W poniedziałek czeka nas wyjątkowy kosmiczny test – DART ma uderzyć w asteroidę

Rekomendowane odpowiedzi

W najbliższy poniedziałek NASA spróbuje zrobić coś, czego ludzkość nigdy wcześniej nie dokonała – zmienić tor lotu asteroidy. Jeśli wszystko pójdzie zgodnie z planem, 26 września o godzinie 21:14 czasu polskiego w asteroidę Dimorphos uderzy pojazd DART. Będzie to pierwszy w historii test obrony Ziemi przed asteroidami.

Dimorphos ma około 170 metrów średnicy, krąży wokół 800-metrowego Didymosa i wcale nam nie zagraża. W momencie zderzenia będzie znajdował się około 11 milionów kilometrów od Ziemi. Misja DART ma na celu sprawdzenie przede wszystkim, czy jesteśmy w stanie trafić wysłanym z Ziemi pojazdem w asteroidę oraz czy po uderzeniu asteroida zmieni kurs. NASA chce, by pędzący z prędkością 23 000 km/h pojazd wielkości samochodu przesunął Dimorphosa skracając o 10 minut czas jego obiegu wokół Didymosa. Obecnie Dimorphos okrąża większą asteroidę w ciągu 11 godzin i 55 minut. Skrócenie tego czasu o 10 minut zostanie zarejestrowane przez naziemne teleskopy.

Przed kilkoma tygodniami od misji DART oddzielił się satelita LICIACube, który podąża jego śladem. Po uderzeniu LICIACube będzie towarzyszył układowi Dimorphos-Didymos i przysyłał nam jego zdjęcia, na podstawie których specjaliści będą oceniali skutki zderzenia. Ponadto w październiku 2024 roku ma wystartować misja Hera Europejskiej Agencji Kosmicznej. Dwa lata później Hera spotka się z Dimorphosem i dokona szczegółowych pomiarów. W jej ramach na Dimorphosie ma wylądować miniaturowy lądownik.

Czy coś nam grozi?

W Układzie Słonecznym znajdują się miliardy komet i asteroid. Niewielka część z nich to NEO (near-Earth object), czyli obiekty bliskie ziemi. Za NEO uznawany jest obiekt, którego peryhelium – punkt orbity najbliższy Słońcu – wynosi mniej niż 1,3 jednostki astronomicznej. Jednostka astronomiczna (j.a.) to odległość pomiędzy Ziemią a Słońcem, wynosi ona 150 milionów kilometrów. To 1,3 j.a. od Słońca oznacza bowiem, że taki obiekt może znaleźć się w odległości 0,3 j.a. (45 milionów km) od Ziemi.

Obecnie znamy (stan na 21 września bieżącego roku) 29 801 NEO. Uznaje się, że asteroidy o średnicy większej niż 20 metrów mogą, w przypadku wpadnięcia w atmosferę Ziemię, dokonać poważnych lokalnych zniszczeń. Oczywiście im asteroida większa, tym bardziej dla nas niebezpieczna. Za bardzo groźne uznawane są asteroidy o średnicy ponad 140 metrów, a te o średnicy ponad 1 kilometra mogą spowodować katastrofę na skalę globalną.

Wśród wszystkich znanych nam NEO jest 10 199 obiektów o średnicy ponad 140 metrów i 855 o średnicy przekraczającej kilometr. Specjaliści uważają, że znamy niemal wszystkie NEO o średnicy przekraczającej kilometr. Wiemy też, że przez najbliższych 100 lat żaden taki obiekt nie zagrozi Ziemi. Jednak już teraz przygotowywane są scenariusze obrony.

Gdybyśmy bowiem wykryli tak wielki obiekt, a badania jego orbity wykazałyby, że prawdopodobnie uderzy w Ziemię, będziemy potrzebowali całych dziesięcioleci, by się obronić. Jeśli bowiem chcielibyśmy zmieniać trasę takiego obiektu, to biorąc pod uwagę jego olbrzymią masę, już teraz wiemy, że wysłany z Ziemi pojazd, uderzając w asteroidę, tylko minimalnie zmieniłby jej trajektorię. Do zderzenia musiałoby zatem dojść na całe dziesięciolecia przed przewidywanym uderzeniem w Ziemię, by ta minimalna zmiana kumulowała się w czasie i by asteroida ominęła naszą planetę.

Co lata obok

W bieżącym roku w pobliżu Ziemi pojawi się kilka naprawdę dużych NEO. Pierwszą z nich będzie asteroida 2022 RM4 o średnicy 330–740 metrów, która 1 listopada przeleci w odległości 2,3 miliona kilometrów od nas. Trzy tygodnie później w trzykrotnie większej odległości od Ziemi znajdzie się 2019 QR1 o średnicy 180–410 metrów, a 2 i 3 grudnia w odległości około 5 milionów kilometrów przelecą obiekty o średnicy – odpowiednio – 320-710 m i 150-330 m.

Jeśli zaś chodzi o asteroidy o średnicy ponad 1 kilometra, to w ciągu najbliższych 12 miesięcy będziemy mieli dwa takie spotkania. Już 16 lutego 2023 w odległości około 4,5 miliona kilometrów od Ziemi znajdzie się asteroida 199145 (2005 YY128) o średnicy 570–1300 metrów, a 13 kwietnia w podobnej odległości minie nas 436774 (2012 KY3) o średnicy 540–1200 metrów. Na odwiedziny prawdziwego olbrzyma musimy zaś poczekać do 2 września 2057 roku. Wtedy w odległości 7,5 miliona kilometrów minie nas pędząca z prędkością 48 492 km/h asteroida 3122 Florence o średnicy 4,9 km.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Koala to jedne z najbardziej rozpoznawalnych i lubianych zwierząt na Ziemi. Te niewielkie ssaki są jednak zagrożone w wyniku utraty i fragmentacji siedlisk oraz trapiących je chorób. Wiemy, że niemal całe życie spędzają na drzewach, schodzą z nich tylko, by przemieścić się na inne drzewo. I pomimo tego, że na gatunek ten zwraca się dużo uwagi, nauka niewiele wie o tych nielicznych chwilach, które zwierzęta spędzają na ziemi. Tymczasem z najnowszych badań wynika, że właśnie to zabija koale.
      Już poprzednie badania zgonów koali pokazały, że do 66% zgonów wśród nich dochodzi w momencie, gdy są na ziemi. Są tam głównie zabijane przez psy oraz samochody. Nie wiemy, jak często koala schodzą z drzew, jak daleko i jak szybko się przemieszczają, jak długo pozostają na ziemi, dlaczego schodzą z drzew. To niezwykle ważne informacje, których potrzebujemy, jeśli chcemy zidentyfikować najbardziej zagrożone obszary lub pory dnia i opracować strategie zmniejszenia zagrożeń czyhających na te zwierzęta, mówi doktorantka Gabriella Sparkes z University of Queensland.
      Uczona wraz z zespołem wyposażyła dzikie koale w nadajniki GPS oraz akcelerometry. Urządzenia założono zwierzętom żyjącym na obszarach, na których wiele drzew wycięto na potrzeby rolnictwa. Pozycję koali rejestrowano co 5 minut, a gdy znalazły się na ziemi, była ona odnotowywana co 5 sekund. Dzięki temu możliwe było precyzyjne określenie zachowań zwierząt.
      Tym, co zaszokowało naukowców, był fakt, jak wiele czasu zwierzęta spędzają na drzewach. Okazało się, że schodzą one z nich zaledwie 2-3 razy w ciągu nocy, a łączny czas przebywania na gruncie wynosi zaledwie około 10 minut. Z badań wynika też, że przebywające na ziemi zwierzę porusza się naprawdę powoli. Niemal tyle samo czasu spędzały na siedzeniu i staniu, co na przemieszczaniu się, a szybciej poruszają się jedynie przez 7% czasu spędzanego na gruncie. To może oznaczać, że zwierzęta bardzo szczegółowo oceniają otocznie, być może starannie wybierają drzewa, na które chcą wejść, a być może szybszy ruch wiąże się z olbrzymim wydatkiem energetycznym.
      Dokonane odkrycie przynosi niezwykle ważne informacje i pokazuje, jak wielkim zagrożeniem jest wycinka drzew. Skoro w ciągu tych zaledwie 10 minut przebywania na gruncie, ginie aż 2/3 zwierząt, a fragmentacja siedlisk powoduje, że koala zmuszone są przebywać na gruncie coraz więcej czasu, dalsze niszczenie środowiska może przynieść gatunkowi zagładę.
      Teraz autorzy badań oceniają te cechy habitatów koali, które decydują, jak długo zwierzęta pozostają na drzewach. Jeśli zidentyfikujemy gatunki drzew lub warunki środowiskowe powodujące, że zwierzęta dłużej zostają na drzewach, być może będziemy w stanie tak zarządzać krajobrazem, że rzadziej będą musiały schodzić z drzew, mówi Sparkes.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu ostatnich 200 lat ludzkość wybudowała tyle zapór wodnych, że masa nagromadzonej wody doprowadziła do przesunięcia się skorupy Ziemi w stosunku do osi obrotu naszej planety. Pierwsza ze zmian została wywołana przez zapory wybudowane w Amerykach, drugą zaś spowodowało budowanie zapór w Afryce i Azji.
      Skorupa Ziemi leży na plastycznej, częściowo stopionej górnej części płaszcza planety. Może się więc względem niego przesuwać. I przesuwa się w wyniku zmiany rozkładu masy. Wówczas zmienia się też położenie punktów na skorupie, które wcześniej stanowiły bieguny planety.
      Geolodzy z Uniwersytetu Harvarda opublikowali na łamach Geophysical Research Letters artykuł, w którym ocenili wpływ 6862 zapór wodnych wybudowanych przez człowieka w latach 1835–2011 na położenie skorupy.
      Pomiędzy rokiem 1835 a 1954 w Ameryce Północnej i – w znacznie mniejszym stopniu – w Europie wybudowano tak wiele zapór wodnych, że w wyniku zmian dystrybucji masy na planecie dotychczasowy punkt wyznaczający biegun północny przesunął się 20,5 centymetra w kierunku 103. południka na wschód od Greenwich, który przechodzi przez Rosję, Mongolię, Chiny, Wietnam, Laos i Indonezję. Z tych ponad 20 centymetrów ruchu na wiek XIX przypadało jedynie 0,7 cm. Następnie w latach 1954–2011 tamy wybudowane w Afryce Wschodniej i Azji spowodowały, że doszło do przesunięcia o 57,1 cm w kierunku południka 117. zachodniego, przebiegającego przez zachodnie części Kanady i USA.
      Uwięzienie tak wielkich ilości wody w zaporach spowodowało, że w badanym okresie poziom oceanów spadł o 21 milimetrów. A raczej nie zwiększył się o te 21 mm. W badanych zaporach znajduje się około 8000 kilometrów sześciennych wody.
      W sumie, z różnych przyczyn, w latach 1835–2011 skorupa ziemska przesunęła się o około 113 centymetrów, z czego 104 centymetry przypadają na wiek XX.
      Źródło: True Polar Wander Driven by Artificial Water Impoundment: 1835–2011, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115468

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
      Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
      Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
      Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
      Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
      Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ziemia doświadczyła co najmniej 5 epizodów masowego wymierania. Przyczyny niektórych z nich, jak wymierania kredowego, kiedy wyginęły dinozaury, są znane. Co do innych wymierań, nie mamy takiej pewności. Od pewnego czasu pojawiają się głosy, że za przynajmniej jedno z wymierań odpowiedzialny był wybuch supernowej. Autorzy nowych badań uważają, że bliskie Ziemi supernowe już co najmniej dwukrotnie doprowadziły do wymierania gatunków. I nie mamy gwarancji, że sytuacja się nie powtórzy.
      Podczas eksplozji supernowej dochodzi do emisji olbrzymich ilości promieniowania ultrafioletowego, X czy gamma. Z badań przeprowadzonych w 2020 roku wiemy, że wybuch supernowej w odległości mniejszej niż 10 parseków (ok. 33 lata świetlne) od Ziemi, całkowicie zabiłby życie na naszej planecie. Za wymierania mogą więc odpowiadać wybuchy, do których doszło w odległości około 20 parseków (pc). Zginęłoby wówczas wiele gatunków, ale samo życie by przetrwało.
      Alexis L. Quintana z Uniwersytetu w Alicante oraz Nicholas J. Wright i Juan Martínez García z Keele University przyjrzeli się 24 706 gwiazdom OB znajdujących się w odległości 1 kiloparseka (kpc), czyli 3261 lat świetlnych od Słońca. Dzięki temu obliczyli tempo tworzenia się takich gwiazd, liczbę supernowych oraz liczbę supernowych bliskich Ziemi. Na podstawie tych obliczeń doszli do wniosku, że supernowe mogły odpowiadać za dwa masowe wymierania na Ziemi – ordowickie sprzed 438 milionów lat oraz dewońskie, do którego doszło 374 miliony lat temu.
      Autorzy wspomnianych badań z 2020 roku stwierdzili, że supernowa Typu II była odpowiedzialna z kryzys Hangenberg, końcowy epizod wymierania dewońskiego. Ich zdaniem, promieniowanie z wybuchu supernowej docierało do Ziemi przez 100 000 lat, doprowadziło do olbrzymiego zubożenia warstwy ozonowej i masowego wymierania.
      Quintana, Wright i García wyliczają, że do eksplozji supernowej w odległości 20 pc od Ziemi dochodzi raz na około 2,5 miliarda lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Curtin University School of Earth and Planetary Sciences i Geological Survey of Western Australia, odkryli najstarszy na Ziemi krater uderzeniowy. Znaleźli go na obszarze North Pole Dome znajdującym się w regionie Pilbara, w którym znajdują się najstarsze skały na naszej planecie. Krater powstał 3,5 miliarda lat temu.
      Przed naszym odkryciem najstarszy znany krater uderzeniowy na Ziemi liczył sobie 2,2 miliarda lat, mówi profesor Tim Johnson i dodaje, że znalezienie starszego krateru w dużym stopniu wpływa na założenie dotyczące historii Ziemi.
      Krater zidentyfikowano dzięki stożkom zderzeniowym. To struktura geologiczna, która powstaje w wyniku szokowego przekształcenia skał. Stożki powstają w pobliżu kraterów uderzeniowych czy podziemnych prób jądrowych. W badanym miejscu stożki powstały podczas upadku meteorytu pędzącego z prędkością ponad 36 000 km/h. Było to potężne uderzenie, w wyniku którego powstał krater o średnicy ponad 100 kilometrów, a wyrzucone szczątki rozprzestrzeniły się po całej planecie.
      Wiemy, że takie zderzenia często miały miejsce na wczesnych etapach powstawania Układu Słonecznego. Odkrycie tego krateru i znalezienie innych z tego samego czasu może nam wiele powiedzieć o pojawieniu się życia na Ziemi. Kratery uderzeniowe tworzą bowiem środowisko przyjazne mikroorganizmom, takie jak zbiorniki z gorącą wodą, dodaje profesor Chris Kirkland.
      Olbrzymia ilość energii, jaka wyzwoliła się podczas uderzenia, mogła mieć wpływ na kształt młodej skorupy ziemskiej, wciskając jedne jej części pod drugie lub wymuszając ruch magmy w górę. Uderzenie mogło tez przyczynić się do powstania kratonu, dużego stabilnego fragmentu skorupy ziemskiej, będącego zalążkiem kontynentu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...