Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W poniedziałek czeka nas wyjątkowy kosmiczny test – DART ma uderzyć w asteroidę

Rekomendowane odpowiedzi

W najbliższy poniedziałek NASA spróbuje zrobić coś, czego ludzkość nigdy wcześniej nie dokonała – zmienić tor lotu asteroidy. Jeśli wszystko pójdzie zgodnie z planem, 26 września o godzinie 21:14 czasu polskiego w asteroidę Dimorphos uderzy pojazd DART. Będzie to pierwszy w historii test obrony Ziemi przed asteroidami.

Dimorphos ma około 170 metrów średnicy, krąży wokół 800-metrowego Didymosa i wcale nam nie zagraża. W momencie zderzenia będzie znajdował się około 11 milionów kilometrów od Ziemi. Misja DART ma na celu sprawdzenie przede wszystkim, czy jesteśmy w stanie trafić wysłanym z Ziemi pojazdem w asteroidę oraz czy po uderzeniu asteroida zmieni kurs. NASA chce, by pędzący z prędkością 23 000 km/h pojazd wielkości samochodu przesunął Dimorphosa skracając o 10 minut czas jego obiegu wokół Didymosa. Obecnie Dimorphos okrąża większą asteroidę w ciągu 11 godzin i 55 minut. Skrócenie tego czasu o 10 minut zostanie zarejestrowane przez naziemne teleskopy.

Przed kilkoma tygodniami od misji DART oddzielił się satelita LICIACube, który podąża jego śladem. Po uderzeniu LICIACube będzie towarzyszył układowi Dimorphos-Didymos i przysyłał nam jego zdjęcia, na podstawie których specjaliści będą oceniali skutki zderzenia. Ponadto w październiku 2024 roku ma wystartować misja Hera Europejskiej Agencji Kosmicznej. Dwa lata później Hera spotka się z Dimorphosem i dokona szczegółowych pomiarów. W jej ramach na Dimorphosie ma wylądować miniaturowy lądownik.

Czy coś nam grozi?

W Układzie Słonecznym znajdują się miliardy komet i asteroid. Niewielka część z nich to NEO (near-Earth object), czyli obiekty bliskie ziemi. Za NEO uznawany jest obiekt, którego peryhelium – punkt orbity najbliższy Słońcu – wynosi mniej niż 1,3 jednostki astronomicznej. Jednostka astronomiczna (j.a.) to odległość pomiędzy Ziemią a Słońcem, wynosi ona 150 milionów kilometrów. To 1,3 j.a. od Słońca oznacza bowiem, że taki obiekt może znaleźć się w odległości 0,3 j.a. (45 milionów km) od Ziemi.

Obecnie znamy (stan na 21 września bieżącego roku) 29 801 NEO. Uznaje się, że asteroidy o średnicy większej niż 20 metrów mogą, w przypadku wpadnięcia w atmosferę Ziemię, dokonać poważnych lokalnych zniszczeń. Oczywiście im asteroida większa, tym bardziej dla nas niebezpieczna. Za bardzo groźne uznawane są asteroidy o średnicy ponad 140 metrów, a te o średnicy ponad 1 kilometra mogą spowodować katastrofę na skalę globalną.

Wśród wszystkich znanych nam NEO jest 10 199 obiektów o średnicy ponad 140 metrów i 855 o średnicy przekraczającej kilometr. Specjaliści uważają, że znamy niemal wszystkie NEO o średnicy przekraczającej kilometr. Wiemy też, że przez najbliższych 100 lat żaden taki obiekt nie zagrozi Ziemi. Jednak już teraz przygotowywane są scenariusze obrony.

Gdybyśmy bowiem wykryli tak wielki obiekt, a badania jego orbity wykazałyby, że prawdopodobnie uderzy w Ziemię, będziemy potrzebowali całych dziesięcioleci, by się obronić. Jeśli bowiem chcielibyśmy zmieniać trasę takiego obiektu, to biorąc pod uwagę jego olbrzymią masę, już teraz wiemy, że wysłany z Ziemi pojazd, uderzając w asteroidę, tylko minimalnie zmieniłby jej trajektorię. Do zderzenia musiałoby zatem dojść na całe dziesięciolecia przed przewidywanym uderzeniem w Ziemię, by ta minimalna zmiana kumulowała się w czasie i by asteroida ominęła naszą planetę.

Co lata obok

W bieżącym roku w pobliżu Ziemi pojawi się kilka naprawdę dużych NEO. Pierwszą z nich będzie asteroida 2022 RM4 o średnicy 330–740 metrów, która 1 listopada przeleci w odległości 2,3 miliona kilometrów od nas. Trzy tygodnie później w trzykrotnie większej odległości od Ziemi znajdzie się 2019 QR1 o średnicy 180–410 metrów, a 2 i 3 grudnia w odległości około 5 milionów kilometrów przelecą obiekty o średnicy – odpowiednio – 320-710 m i 150-330 m.

Jeśli zaś chodzi o asteroidy o średnicy ponad 1 kilometra, to w ciągu najbliższych 12 miesięcy będziemy mieli dwa takie spotkania. Już 16 lutego 2023 w odległości około 4,5 miliona kilometrów od Ziemi znajdzie się asteroida 199145 (2005 YY128) o średnicy 570–1300 metrów, a 13 kwietnia w podobnej odległości minie nas 436774 (2012 KY3) o średnicy 540–1200 metrów. Na odwiedziny prawdziwego olbrzyma musimy zaś poczekać do 2 września 2057 roku. Wtedy w odległości 7,5 miliona kilometrów minie nas pędząca z prędkością 48 492 km/h asteroida 3122 Florence o średnicy 4,9 km.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Długość, szerokość i głębokość dwóch kanionów znajdujących się po niewidocznej z Ziemi stronie Księżyca są podobne do rozmiarów Wielkiego Kanionu Kolorado, informują naukowcy z Lunar and Planetary Institute (LPI). O ile jednak Wielki Kanion powstawał przez miliony lat, kaniony na Księżycu pojawiły się w czasie krótszym niż... 10 minut.
      Niemal cztery miliardy lat temu asteroida lub kometa przeleciała nad biegunem południowym Księżyca, otarła się o szczyty Malapert i Mouton i uderzyła w powierzchnię. Zderzenie wyrzuciło strumienie skał, które wyrzeźbiły kaniony o rozmiarach ziemskiego Wielkiego Kanionu, mówi główny autor badań, David Kring z Universities Space Research Association do którego należy LPI.
      Obiekt, który utworzył oba kaniony, w chwili uderzenia pędził z prędkością 55 000 kilometrów na godzinę. W wyniku upadku powstał 320-kilometrowy krater uderzeniowy Schrödinger. Przyciągnął on uwagę grupy naukowców, stając się okazją do zbadania wczesnych etapów rozwoju Układu Słonecznego.
      Dzięki danym dostarczonym przez Lunar Reconnaissance Orbiter naukowcy poznali rozmiary kanionów. Vallis Schrödinger ma ok. 270 km długości, ok. 20 km szerokości i 2,7 km głębokości, a Vallis Planck – 280 km długości, 27 szerokości i 3,5 km głębokości, a na długości 860 km rozciągają się kratery uderzeniowe powstałe w wyniku upadku materiału, który go wyrzeźbił.
      Badania pokazały, że kratery powstały w wyniku uderzeń szczątków z upadku asteroidy lub komety. Wyrzucone w wyniku pierwotnego uderzenia skały leciały z prędkością 3600 km/h wywołując kolejne uderzenia, która wyrzeźbiły kaniony. Energia potrzebna do ich powstania była 130-krotnie większa niż energia całej broni atomowej będącej w posiadaniu ludzkości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa ekspertów postanowiła odpowiedzieć na pytanie, czy pozaziemska cywilizacja o podobnym do naszego poziomie rozwoju technologicznego, byłaby w stanie wykryć Ziemię i zdobyć dowody na istnienie ludzkości, a jeśli tak, to jakie sygnały mogliby wykryć i z jakiej odległości. Zespół, pracujący pod kierunkiem doktor Sofii Sheikh z SETI Institute, składał się ze specjalistów z projektu Characterizing Atmospheric Technosignatures oraz Penn State Extraterrestrial Intelligence Center.
      Do przeprowadzenia analizy – pierwszej tego typu – naukowcy wykorzystali modele teoretyczne. Wykazały one, że pozaziemska cywilizacja z największej odległości mogłaby wykryć sygnały radiowe, takie jak te pochodzące z niedziałającego już Radioteleskopu Arecibo. Obcy mogliby zauważyć je z odległości do 12 000 lat świetlnych. Zatem sygnał taki mogłaby wykryć cywilizacja znajdująca się w połowie odległości między Ziemią a centrum Drogi Mlecznej.
      Radioteleskop Arecibo nie istnieje, więc pozostają nam inne sygnały, na podstawie których można nas odnaleźć. Deep Space Network (DSN), używaną przez NASA sieć komunikacyjną do łączenia się z pojazdami przebywającymi w przestrzeni kosmicznej, obcy mogliby zauważyć z odległości 65 lat świetlnych.
      Jednak tutaj musimy na chwilę się zatrzymać. W obu tych przypadkach – Arecibo i DSN – musimy pamiętać, że podane odległości są większe niż czas, jaki upłynął od uruchomienia tych urządzeń. Zatem ani pierwszy sygnał z Arecibo nie dotarł jeszcze na odległość 1200 lś, ani sygnału z DSN nie można zauważyć obecnie z odległości 65 lat świetlnych.
      Im bliżej Ziemi, tych więcej technosygnatur, sygnałów świadczących o obecności cywilizacji technicznej. I tak sygnatury atmosferyczne, takie jak emisja dwutlenku azotu, są dla nas obecnie łatwiejsze do wykrycia niż były jeszcze dekadę temu. Dzięki takim instrumentom jak Teleskop Webba czy planowany Habitable Worlds Observatory (HWO) możemy zauważyć obcą cywilizację z większej niż wcześniej odległości. Tak więc cywilizacja dysponująca HWO mogłaby dostrzec nas z odległości 5,7 lat świetlnych. To odległość nieco większa, niż dystans dzielący nas od najbliższej gwiazdy, Proximy Centauri. Z podobnej odległości można zarejestrować lasery wycelowane w niebo. Ludzkość czasami korzysta z takich instrumentów jak Deep Space Optical Communications, którego NASA używa do testów technologii komunikacji laserowej w przestrzeni kosmicznej.
      Z odległości 4 lat świetlnych można zauważyć sygnały sieci bezprzewodowych LTE. Z kolei sygnał z Voyagera jest widoczny z 0,97 roku świetlnego.
      Obcy mogliby wykryć też światła miast. Szczególnie te generowane przez lampy sodowe, które mają unikatowe sygnatury. Ich obserwacja jest możliwa z odległości 0,036 roku świetlnego. To 2275 jednostek astronomicznych, a więc obszar położony w pobliżu wewnętrznych krawędzi Obłoku Oorta.
      Z regionów Pasa Kuipera (30–50 au) obcy mogliby odnotować obecność miejskich wysp ciepła, a gdyby mieszkali na Marsie mieliby szansę zauważyć satelity krążące wokół Ziemi.
      Celem badań było pokazanie, w jakim miejscu my sami znajdujemy się, jeśli chodzi o możliwość wykrywania technosygnatur świadczących o obecności pozaziemskich cywilizacji. W SETI nigdy nie zakładamy, że życie i poziom rozwoju technologicznego na innych planetach są takie same jak nasze. Jednak ocena naszych możliwości pozwala zobaczyć badania prowadzone przez SETI w odpowiednim kontekście, mówi współautor badań, Macy Huston.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania próbek asteroidy Bennu dostarczonych na Ziemię przez misję OSIRIS-REx wykazały, że znajdują się tam molekuły, które na Ziemi są niezbędnymi składnikami do powstania życia. Znaleziono też ślady świadczące o obecności słonej wody. Mogła ona być miejscem, w którym dochodziło do interakcji i łączenia się tych molekuł.
      NASA zastrzega, że odkrycie nie jest równoznaczne z odkryciem życia na asteroidzie. Sugeruje ono jednak, że we wczesnym Układzie Słonecznym powszechnie istniały warunki niezbędne do powstania życia, a to zwiększa prawdopodobieństwo znalezienia go na innych ciałach niebieskich.
      Na łamach Nature i Nature Astronomy ukazały się dwa artykuły, w których naukowcy z NASA i innych instytucji – zarówno z USA, jak i Niemiec, Japonii, Francji, Wielkiej Brytanii czy Australii – omawiają wyniki swoich badań.
      W Nature Astronomy zespół prowadzony przez Daniela P. Glavina z NASA informuje, że na asteroidzie zidentyfikowano 14 z 20 podstawowych (kanonicznych) aminokwasów białkowych, z których powstają białkna na Ziemi oraz wszystkie pięć podstawowych zasad azotowych nukleotydów, które ziemskie organizmy żywe wykorzystują do przechowywania i przekazywania informacji genetycznej. Odnotowano też bardzo wysoki poziom amoniaku. Jest on bardzo ważny z punktu widzenia biologii, gdyż reaguje z formaldehydem – również znalezionym w próbkach z Bennu – i w odpowiednich warunkach tworzy bardziej złożone molekuły, jak aminokwasy.
      Wszystkie elementy niezbędne do powstania życia, które znaleziono na Bennu, zidentyfikowano już wcześniej na innych skałach pochodzenia kosmicznego. Tym razem jednak mamy dziewicze próbki pobrane w przestrzeni kosmicznej, co wspiera hipotezę mówiącą, że obiekty, które powstały z dala od Słońca, mogły być waźnym źródłem rozprzestrzeniania się życiodajnych molekuł po Układzie Słonecznym.
      Glavin i jego koledzy szukali molekuł niezbędnych do powstania życia. Tymczasem Tim J. McCoy, kurator zbiorów meteorytów z Narodowego Muzeum Historii Naturalnej, szukał na Bennu informacji o środowisku, w jakim molekuły te powstały. Wraz z zespołem informuje na łamach Nature o znalezieniu 11 minerałów, które powstają, gdy zawierające sole woda odparowuje przez długi czas, pozostawiając po sobie kryształy soli. Podobne co na Bennu solanki prawdopodobnie istnieją na planecie karłowatej Ceres oraz księżycu Saturna, Enceladusie.
      Naukowcy już wcześniej wykrywali na znalezionych na Ziemi meteorytach różne produkty takiego odparowywania, jednak dotychczas nie mieli okazji badać ostatecznych produktów takiego odparowywania trwającego przez tysiące lub więcej lat. Na Bennu znaleziono też kilka minerałów, w tym sodę naturalną, tzw. tronę, których nigdy wcześniej nie zaobserwowano na próbkach pochodzących spoza Ziemi.
      Badania dostarczają wielu nowych informacji, ale pozostawiają bez odpowiedzi liczne pytania. Niemal wszystkie aminokwasy są chiralne, a więc występują w dwóch wariantach, będących swoim lustrzanym odbiciem. Organizmy żywe na Ziemi wykorzystują wyłącznie konformację L- (są lewostronne). Tymczasem na Bennu występowały one w postaci mieszaniny racemicznej, czyli zawierającej równe ilości obu wariantów. To najprawdopodobniej oznacza, że na wczesnej Ziemi aminokwasy również występowały w postaci takich mieszanin. Zatem wciąż jest tajemniczą, dlaczego życie wybrało lewo-, a nie prawostronność.
      Misja OSIRIS-REx została wystrzelona w 2016 roku. W 2020 informowaliśmy, że padła ofiarą własnego sukcesu i pobrała tak dużo próbek, iż pojemnik się nie zamyka, więc NASA musi znaleźć awaryjne rozwiązanie problemu. Próbki trafiły na Ziemię w 2023 roku. W międzyczasie zaś, gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. W końcu zdecydowano, że pojazd poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
      Przemianowana na OSIRIS-APEX misja będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2023 roku średnia temperatura była niemal o 1,5 stopnia wyższa od średniej sprzed rewolucji przemysłowej. Jednak naukowcy próbujący wyjaśnić ten wzrost, mają kłopoty z określeniem jego przyczyn. Gdy bowiem biorą pod uwagę emisję gazów cieplarnianych, zjawisko El Niño czy wpływ erupcji wulkanicznych, wciąż niewyjaśnione pozostaje około 0,2 stopnia wzrostu. Uczeni z Instytutu Badań Polarnych i Morskich im. Alfreda Wegenera (AWI) zaproponowali na łamach Science wyjaśnienie tego zjawiska. Według nich te brakujące 0,2 stopnia to skutek zmniejszającego się albedo – zdolności do odbijania światła – Ziemi.
      Uczeni z AWI, we współpracy ze specjalistami od modelowania klimatu z European Centre for Medium-Range Weather Forecasts (ECMWF), przeanalizowali dane satelitarne z NASA oraz ponownie przyjrzeli się danym ECMWF. Niektóre z nich pochodziły nawet z roku 1940. Na ich podstawie sprawdzili jak przez ostatnie dziesięciolecia zmieniał się globalny budżet energetyczny oraz pokrywa chmur na różnych wysokościach. Zarówno w danych NASA, jak i ECMWF, rok 2023 wyróżniał się jako ten o najniższym albedo planetarnym. Od lat obserwujemy niewielki spadek albedo. Ale dane pokazują, że w 2023 roku albedo było najniższe od co najmniej roku 1940, mówi doktor Thomas Rackow.
      Zmniejszanie się albedo Ziemi naukowcy obserwują od lat 70. Częściowo za zjawisko to odpowiadało zmniejszanie się pokrywy lodowej oraz ilości lodu pływającego w Arktyce. Mniej śniegu i lodu oznacza, że mniej promieniowania słonecznego jest odbijane przez Ziemię. Od 2016 roku efekt ten został wzmocniony przez zmniejszanie się zasięgu lodu pływającego w Antarktyce. Jednak nasze analizy pokazywały, że spadek albedo w regionach polarnych odpowiada jedynie za 15% całkowitego spadku albedo, dodaje doktor Helge Goessling. Albedo zmniejszyło się też jednak w innych regionach planety i gdy naukowcy wprowadzili dane do modeli budżetu energetycznego stwierdzili, że gdyby nie spadek albedo od grudnia 2020, to średni temperatury w roku 2023 byłyby o 0,23 stopnie Celsjusza niższe.
      Na zmniejszenie albedo wpłynął przede wszystkim zanik nisko położonych chmur z północnych średnich szerokości geograficznych i z tropików. Szczególnie silnie zjawisko to zaznaczyło się na Atlantyku, co wyjaśniałoby, dlaczego był on tak niezwykle gorący. Pokrywa chmur na średnich i dużych wysokościach nie uległa zmianie lub zmieniła się nieznacznie.
      Chmury na wszystkich wysokościach odbijają światło słoneczne, przyczyniając się do ochłodzenia planety. Jednak te, które znajdują się w wysokich, chłodnych warstwach atmosfery, tworzą rodzaj otuliny, który zapobiega ucieczce w przestrzeń kosmiczną ciepła wypromieniowywanego przez Ziemię. Zatem utrata chmur położonych niżej oznacza, że tracimy część efektu chłodzącego, wpływ ocieplający chmur pozostaje.
      Rodzi się więc pytanie, dlaczego niżej położone chmury zanikły. Częściowo przyczyną może być mniejsza antropogeniczna emisja aerozoli, szczególnie z powodu narzucenia bardziej restrykcyjnych norm na paliwo używane przez statki. Aerozole z jednej strony biorą udział w tworzeniu się chmur, z drugiej zaś – same odbijają promieniowanie słoneczne. Jednak badacze uważają, że czystsze powietrze to nie wszystko i mamy do czynienia z bardziej niepokojącym zjawiskiem.
      Ich zdaniem to sama zwiększająca się temperatura powoduje, że na mniejszych wysokościach formuje się mniej chmur. Jeśli zaś znaczna część spadku albedo to – jak pokazują niektóre modele klimatyczne – skutek sprzężenia zwrotnego pomiędzy globalnym ociepleniem a nisko położonymi chmurami, to w przyszłości powinniśmy spodziewać się jeszcze bardziej intensywnego ocieplenia. Średnia temperatura na Ziemi może przekroczyć granicę wzrostu o 1,5 stopnia Celsjusza w porównaniu z epoką przedprzemysłową wcześniej, niż sądziliśmy, dodaje Goessling.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Woda z komety 67P/Czuriumow-Gierasimienko ma podobny stosunek deuteru i wodoru, co woda w ziemskich oceanach, poinformował międzynarodowy zespół naukowy, pracujący pod kierunkiem Kathleen E. Mandt z NASA. To zaś ponownie otwiera dyskusję na temat roli komet rodziny Jowisza w dostarczeniu wody na Ziemię. Uzyskane właśnie wyniki stoją w sprzeczności z wcześniejszymi badaniami, jednak naukowcy stwierdzili, że wcześniejsza interpretacja wyników badań wykonanych przez satelity została zafałszowana przez pył z komety.
      W gazie i pyle, z którego uformowała się Ziemia, mogło znajdować się nieco wody, jednak większość z niej została odparowana przez Słońce. Teraz, po 4,6 miliarda lat, Ziemia jest pełna wody, a naukowcy wciąż się nad jej pochodzeniem. Mamy silne dowody wskazujące na to, że została ona przyniesiona przez asteroidy. Jednak wciąż sporna pozostaje rola komet. W ciągu kilku ostatnich dekad badania komet jowiszowych – które zawierają materiał z wczesnych etapów istnienia Układu Słonecznego i powstały poza orbitą Saturna – wykazywały silny związek pomiędzy zawartą w nich wodą, a wodą na Ziemi.
      Związek ten wynikał z podobnego stosunek deuteru do wodoru. To właśnie na jego podstawie można stwierdzić, czy woda występująca na dwóch ciałach niebieskich jest podobna, czy też nie. Woda zawierająca więcej deuteru powstaje w środowisku zimnym, dalej od Słońca. Zatem ta na kometach jest mniej podobna do ziemskiej wody niż ta na asteroidach. Jednak prowadzone przez dekady badania pary wodnej z komet jowiszowych pokazywały podobieństwa do wody na Ziemi. Dlatego też naukowcy zaczęli postrzegać te komety jako ważne źródło wody na Ziemi.
      Jednak w 2014 roku przekonanie takie legło w gruzach. Wtedy to misja Rosetta, wysłana do 67P/Czuriumow-Gierasimienko przez Europejską Agencję Kosmiczną, dostarczyła unikatowych danych na temat komety. A analizujący je naukowcy zauważyli, że stosunek deuteru do wodoru jest na niej największy ze wszystkich zbadanych komet i trzykrotnie większy niż w wodzie ziemskiej. To było olbrzymie zaskoczenie, które skłoniło nas do przemyślenia wszystkiego, mówi Mandt.
      Pracujący pod jej kierunkiem zespół specjalistów z USA, Francji i Szwajcarii, w tym uczonych, którzy brali udział w misji Rosetta, jako pierwszy przeanalizował wszystkie 16 000 pomiarów wykonanych podczas europejskiej misji. Naukowcy chcieli zrozumieć, jakie procesy fizyczne powodują zmienność stosunku deuteru do wodoru w wodzie z komet. Badania laboratoryjne, obserwacje komet i analizy statystyczne wykazały, że pył z komet może wpływać na odczyty. Byłam ciekawa, czy znajdziemy dowody na to, że podobne zjawisko miało miejsce podczas badań 67P. I okazało się, że to jeden z tych rzadkich przypadków, gdy wysuwa się jakąś hipotezę i ona całkowicie się sprawdza, mówi Mandt.
      Naukowcy znaleźli wyraźny związek pomiędzy pomiarami ilości deuteru w warkoczu 67P a ilością pyłu wokół pojazdu Rosetta. To wskazywało, że część odczytów może nie być reprezentatywna dla składu komety.
      Gdy kometa zbliża się do Słońca, jej powierzchnia ogrzewa się i z powierzchni wydobywa się gaz oraz pył. Ziarna pyłu zawierają zamarzniętą wodę. Nowe badania sugerują, że woda zawierająca więcej deuteru łatwiej przylega do pyłu, niż woda jaką spotykamy na Ziemi. Gdy lód z takich ziaren pyłu jest uwalniany do warkocza komety, może powodować, że wygląda to tak, jakby woda z komety zawierała więcej deuteru niż w rzeczywistości.
      Rosetta krążyła w odległości 10–30 kilometrów od głowy komety. Mandt i jej zespół zauważyli, że do przeprowadzenia prawidłowych pomiarów składu wody z komety konieczne jest, by uwolnione do warkocza ziarna pyłu zdążyły wyschnąć. Pozbywają się one wody dopiero w odległości co najmniej 120 kilometrów od głowy komety.
      Odkrycie ma duże znaczenie nie tylko dla zrozumienia roli komet jako źródła wody na Ziemi,a le też do lepszego zrozumienia przyszłych i przeszłych badań. To świetna okazja by jeszcze raz przyjrzeć się obserwacjom z przeszłości i lepiej przygotować się do przyszłych badań, mówi Mandt.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...