Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Proteza pamięci może pomóc ludziom z urazami mózgu i chorobami neurodegeneracyjnymi

Rekomendowane odpowiedzi

Unikatowa metoda stymulacji mózgu naśladująca sposób, w jaki tworzymy wspomnienia, wydaje się poprawiać zdolność ludzi do zapamiętywania nowych informacji. Pierwsze eksperymenty sugerują, że ta prototypowa „proteza pamięci” nie tylko pomaga ludziom cierpiącym na zaburzenia negatywnie wpływające na zdolność do zapamiętywania, ale działa u nich bardziej efektywnie, niż u zdrowych. Być może w przyszłości bardziej zaawansowana wersja takiej protezy będzie pomagała osobom, które utraciły pamięć w wyniku urazu czy chorób neurodegeneracyjnych.

Profesor Sam Deadwyler z Wake Forest Baptist wraz z zespołem od ponad 20 lat pracuje nad technologią naśladowania procesów zachodzących w hipokampie, kluczowej strukturze mózgu, która bierze udział w tworzeniu pamięci krótkotrwałej i przenoszeniu informacji z pamięci krótkotrwałej do długotrwałej. Naukowcy postanowili wykorzystać elektrody wszczepiane do mózgu, by zrozumieć wzorce aktywności elektrycznej pojawiające się podczas zapamiętywania, a następnie wykorzystać te same elektrody do sztucznego stworzenia takich wzorców. Badania prowadzono na zwierzętach oraz na ochotnikach, którzy mieli wszczepione elektrody w ramach leczenia epilepsji.

Bliski współpracownik profesora Deadwylera, doktor Rob Hampson wraz z kolegami z Wake Forest University School of Medicine przeprowadzili eksperymenty nad praktycznym wykorzystaniem wspomnianych badań. Znaleźli 24 ochotników z elektrodami wszczepionymi z powodu epilepsji. Część z tych osób miała też uszkodzenia mózgu.

Wolontariusze brali udział w testach pamięci. Każdemu z nich na ekranie komputera pokazano obrazek. Po pewnym czasie widzieli ten sam obrazek, ale w towarzystwie innych. Ich zadaniem było wskazanie, który z obrazków widzieli już wcześniej. Ten test pamięci krótkoterminowej powtórzono 100-150 razy.

Kolejny test, tym razem pamięci długoterminowej, rozpoczęto 15–90 minut po zakończeniu pierwszego. Tym razem badani widzieli na ekranie 3 obrazki i proszono ich, by wskazali ten, który wydaje im się znajomy.

Oba testy powtórzono dwukrotnie. Za pierwszym razem, by zarejestrować aktywność elektryczną w hipokampie. Za drugim razem podczas testu elektrody stymulowały mózgi badanych, korzystając z wcześniej zarejestrowanego wzorca. Wzorzec ten był inny w przypadku każdej z osób.

Naukowcy zauważyli, że proteza pamięci pozwalała na uzyskanie lepszych wyników w teście pamięci. Badani znacznie lepiej zapamiętywali, gdy w czasie testu ich mózgi były stymulowane przez elektrody według wzorca zarejestrowanego w czasie pierwszego testu. Badani uzyskiwali od 11 do 54 procent lepsze wyniki. Największa poprawa zaszła u tych osób, które na początku eksperymentów miały najpoważniejsze problemy z pamięcią.

Wszystkim uczestnikom eksperymentu elektrody usunięto po tym, jak ich lekarze zakończyli badania związane z dręczącą ich epilepsją. Jednak autorzy protezy pamięci mają nadzieję, że mimo to pacjenci będą odczuwali pozytywne skutki eksperymentu. Teoretycznie bowiem stymulacja elektryczna, jaką otrzymali, może wzmocnić połączenia pomiędzy neuronami w ich hipokampach.

Być może w przyszłości udoskonalona proteza pamięci będzie szeroko używana, by pomóc ludziom z różnymi zaburzeniami. Pierwszymi kandydatami do tego typu leczenia będą zapewne osoby z urazami mózgu. Pomoc osobom z urazami hipokampu powinna być łatwiejsza niż osobom z chorobami neurodegeneracyjnymi, gdyż te ostatnie zwykle uszkadzają wiele regionów mózgu. Zanim jednak takie urządzenia powstaną, musimy znacznie więcej dowiedzieć się o badaniu mózgu i rozwiązać wiele problemów technicznych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Z jakiego powodu pojawił się duży mózg? Objętość mózgu przedstawicieli taksonu Australopithecine, z którego prawdopodobnie wyewoluował rodzaj Homo, była około 3-krotnie mniejsza, niż mózgu H. sapiens. Tkanka mózgowa jest bardzo wymagająca pod względem metabolicznym, wymaga dużych ilości energii. Co spowodowało, że w pewnym momencie zaczęła się tak powiększać? Najprawdopodobniej było to związane z dietą, a jedna z najbardziej rozpowszechnionych hipotez mówi, że to opanowanie ognia dało naszym przodkom dostęp do większej ilości kalorii. Jednak hipoteza ta ma poważną słabość.
      Francusko-amerykański zespół opublikował na lamach Communications Biology artykuł pod tytułem Fermentation technology as a driver of human brain expansion, w którym stwierdza, że to nie ogień, a fermentacja żywności pozwoliła na pojawienie się dużego mózgu. Hipoteza o wpływie ognia ma pewną poważną słabość. Otóż najstarsze dowody na używanie ognia pochodzą sprzed około 1,5 miliona lat. Tymczasem mózgi naszych przodków zaczęły powiększać się około 2,5 miliona lat temu. Mamy więc tutaj różnicę co najmniej miliona lat. Co najmniej, gdyż zmiana, która spowodowała powiększanie się mózgu musiała pojawić na znacznie wcześniej, niż mózg zaczął się powiększać.
      Katherina L. Bryant z Uniwersytetu Aix-Marseille we Francji, Christi Hansen z Hungry Heart Farm and Dietary Consulting oraz Erin E. Hecht z Uniwersytetu Harvarda uważają, że tym, co zapoczątkowało powiększanie się mózgu naszych przodków była fermantacja żywności. Ich zdaniem pożywienie, które przechowywali, zaczynało fermentować, a jak wiadomo, proces ten zwiększa dostępność składników odżywczych. W ten sposób pojawił się mechanizm, który – dostarczając większej ilości składników odżywczych – umożliwił zwiększanie tkanki mózgowej.
      Uczone sądzą, że do fermentacji doszło raczej przez przypadek. To mógł być przypadkowy skutek uboczny przechowywania żywności. I, być może, z czasem tradycje czy przesądy doprowadziły do zachowań, które promowały fermentowaną żywność, a fermentację uczyniły bardziej stabilną i przewidywalną, dodaje Hecht.
      Uzasadnieniem takiego poglądu może być fakt, że ludzkie jelito grupe jest krótsze niż u innych naczelnych, co sugeruje, iż jest przystosowane do trawienia żywności, w której składniki zostały już wcześniej wstępnie przetworzone. Ponadto fermentacja jest wykorzystywana we wszystkich kulturach.
      Zdaniem uczonych, w kontekście tej hipotezy pomocne byłoby zbadanie reakcji mózgu na żywność fermentowaną i niefermentowaną oraz badania nad receptorami smaku i węchu, najlepiej wykonane za pomocą jak najstarszego DNA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Stres może spowodować, że zachorujemy, a naukowcy powoli odkrywają, dlaczego tak się dzieje. Od dłuższego już czasu wiadomo, że mikrobiom jelit odgrywa olbrzymią rolę w naszym stanie zdrowia, zarówno fizycznego, jak i psychicznego. Wiadomo też, że jelita i mózg komunikują się ze sobą. Słabiej jednak rozumiemy szlaki komunikacyjne, łączące mózg z jelitami.
      Kwestią stresu i jego wpływu na mikrobiom postanowili zająć się naukowcy z Instytutu Cybernetyki Biologicznej im. Maxa Plancka w Tybindze. Skupili się na na słabo poznanych gruczołach Brunnera. Znajdują się one w dwunastnicy, gdzie wydzielają śluz zobojętniający treść żołądka, która do niej trafia. Ivan de Araujo i jego zespół odkryli, że myszy, którym usunięto gruczoły Brunnera są bardziej podatne na infekcje, zwiększyła się u nich też liczba markerów zapalnych. Te same zjawiska zaobserwowano u ludzi, którym z powodu nowotworu usunięto tę część dwunastnicy, w której znajdują się gruczoły.
      Okazało się, że po usunięciu gruczołów Brunnera z jelit myszy zniknęły bakterie z rodzaju Lactobacillus. W prawidłowo funkcjonującym układzie pokarmowym bakterie kwasu mlekowego stymulują wytwarzanie białek, które działają jak warstwa ochronna, utrzymująca zawartość jelit wewnątrz, a jednocześnie umożliwiając substancjom odżywczym na przenikanie do krwi. Bez bakterii i białek jelita zaczynają przeciekać i do krwi przedostają się substancje, które nie powinny tam trafiać Układ odpornościowy atakuje te substancje, wywołując stan zapalny i choroby.
      Gdy naukowcy przyjrzeli się neuronom gruczołów Brunnera odkryli, że łączą się one z nerwem błędnym, najdłuższym nerwem czaszkowym, a włókna, do którego połączone są te neurony biegną bezpośrednio do ciała migdałowatego, odpowiadającego między innymi za reakcję na stres. Eksperymenty, podczas których naukowcy wystawiali zdrowe myszy na chroniczny stres wykazały, że u zwierząt spada liczba Lactobacillus i zwiększa się stan zapalny. To zaś sugeruje, że w wyniku stresu mózg ogranicza działanie gruczołów Brunnera, co niekorzystnie wpływa na populację bakterii kwasu mlekowego, prowadzi do przeciekania jelit i chorób.
      Odkrycie może mieć duże znaczenie dla leczenia chorób związanych ze stresem, jak na przykład nieswoistych zapaleń jelit. Obecnie de Araujo i jego zespół sprawdzają, czy chroniczny stres wpływa w podobny sposób na niemowlęta, które otrzymują Lactobacillus wraz z mlekiem matki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Glejak wielopostaciowy to jeden z najczęściej spotykanych i najbardziej agresywnych pierwotnych nowotworów mózgu. Występuje on u od 0,6 do 5 osób na 100 000, a liczba jego przypadków rośnie na całym świecie. Średni spodziewany czas życia od postawienia diagnozy wynosi zaledwie 15 miesięcy. Na University of Toronto postała właśnie nowa technika mikrochirurgiczna, która może pomóc w leczeniu tej choroby. Związane z nią nadzieje są tym większe, że może być wykorzystana do leczenie guzów opornych na inne terapie i umiejscowionych w tych obszarach mózgu, w których interwencja chirurgiczna jest wykluczona.
      Obecnie standardowe leczenie glejaka polega na usunięciu guza i zastosowaniu radio- oraz chemioterapii. Niestety, komórki glejaka bardzo szybko się namnażają i naciekają na sąsiadującą tkankę, przez co ich chirurgiczne usunięcie jest bardzo trudne. Tym bardziej, że mamy do czynienia z mózgiem, w którym nie możemy wycinać guza z dużym marginesem. Jakby tego było mało, glejak szybko nabiera oporności na chemioterapię. Bardzo często więc u pacjentów dochodzi do wznowy nowotworu, który wkrótce przestaje reagować na dostępne metody leczenia.
      Yu Sun, profesor na Wydziale Nauk Stosowanych i Inżynierii oraz Xi Huang z Wydziału Medycyny University of Toronto mają nadzieję na zmianę stanu rzeczy za pomocą robotycznych nano-skalpeli, które mogą precyzyjnie zabijać komórki nowotworu.
      Naukowcy stworzyli węglowe nanorurki, które wypełnili cząstkami tlenku żelaza. Tak uzyskane magnetyczne nanorurki (mCNT) są pokryte przeciwciałami, które rozpoznają specyficzną dla komórek glejaka proteinę CD44. Nanorurki są następnie wstrzykiwane w miejsce występowania guza i samodzielnie poszukują proteiny CD44. Gdy ją znajdą, przyczepiają się do komórki i do niej wnikają. A kiedy są już na miejscu, wystarczy włączyć zewnętrzne pole magnetyczne, pod wpływem którego mCNT zaczynają wirować, uszkadzając od wewnątrz komórki glejaka i prowadzą do ich śmierci.
       

       
      Jako że nanorurki niszczą komórki za pomocą oddziaływania mechanicznego, nie ma ryzyka, że komórki zyskają oporność na ten sposób oddziaływania. Nowa metoda może zatem być odpowiedzią zarówno na problem uodparniania się guza na chemioterapię, jak i na niemożność tradycyjnego usunięcia guza metodami chirurgicznym. Podczas przeprowadzonych już badań na myszach naukowcy wykazali, że ich metoda zmniejszyła rozmiary guza i wydłużyła życie myszy z oporną na chemioterapię formą glejaka wielopostaciowego.
      Inną korzyścią z zastosowania mechanicznego oddziaływania mCNT jest fakt, że obok fizycznego niszczenia struktury komórek, nanorurki mogą modulować specyficzne biochemiczne szlaki sygnałowe, co będziemy starali się wykorzystać do opracowania łączonej terapii biorącej na cel nieuleczalne guzy mózgu, mówi Wang.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wiele osób z różnych kultur, które doświadczyły bliskiej śmierci, wspomina o pojawieniu się wówczas jasnego światła, bliskich zmarłych osób czy wspomnień z całego życia. Doniesienia takie skłaniają do zastanowienia się nad istnieniem świadomości w umierającym mózgu. Sceptycy mówią jednak o halucynacjach osób, które dochodzą do siebie. Wydaje się jednak, że naukowcy zidentyfikowali aktywność mózgu powiązaną z umieraniem.
      Przed laty Jimo Borjigin i jej zespół z Wydziału Medycyny University of Michigan zaobserwowali wzrost aktywności elektrycznej mózgów umierających szczurów. Niedawno naukowcy postanowili sprawdzić, czy podobne zjawisko występuje też u ludzi.
      Doktor Borjigin wraz z kolegami przeanalizowała anonimizowany zbiór danych medycznych, poszukując w nim osób, które wciąż były podłączone do EEG po tym, jak odłączono urządzenia podtrzymujące ich funkcje życiowe. Zidentyfikowano cztery takie osoby.
      Były to osoby w stanie śpiączki, z którymi nie było kontaktu i w końcu, wobec wyczerpania wszelkich możliwości leczenia i bez nadziei na poprawę, osoby te, po uzyskaniu zgody rodziny, zostały odłączone od aparatury. Jednak EEG nie zostało odłączone i ciągle rejestrowało czynności ich mózgu. U dwóch z tych osób zarejestrowano niezwykłą aktywność.
      Z wcześniejszych badań wiemy, że fale gamma są powiązane ze świadomością, wyższymi procesami poznawczymi i przywoływaniem wspomnień. Szczególnie istotne są fale gamma pojawiające się na styku skroniowo-ciemieniowo-potylicznym (TPO) po obu stronach głowy.
      Okazało się, że u obu wspomnianych pacjentów, po odłączeniu urządzeń wspomagających oddychanie, doszło do znacznego wzrostu aktywności fal gamma w tych obszarach mózgu. Aktywność taka trwała kilka minut i momentami była szalenie wysoka, mówi Borjigin. Oczywiście nie wiemy, czy podczas umierania osoby te doświadczały jakichś wizji. Mieliby nam sporo do powiedzenia, gdyby przeżyli, mówi uczona.
      U obu tych osób, w związku ze spadkiem poziomu tlenu we krwi, doszło do wzrostu pulsu. To zaś sugeruje, że działający autonomiczny układ nerwowy jest potrzebny do pojawienia się fal gamma.
      Sam Parnia z uniwersytetu w Nowym Jorku uważa, że wzrost aktywności fal gamma w mózgu umierającej osoby może mieć związek z faktem, że spadający poziom tlenu unieruchamia niektóre „systemy hamowania” w mózgu. To zaś pozwala na aktywowanie normalnie uśpionych szlaków, co widać na EEG. A wszystko dzięki temu, że wymagający pod względem energetycznym system hamowania nie działa, mówi uczony. Jego zdaniem, dokonane odkrycie to dodatkowa wskazówka, że niektóre osoby, z którymi pod koniec ich życia nie potrafimy nawiązać kontaktu, są świadome.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Regularne spożywanie orzechów włoskich korzystnie wpływa na rozwój poznawczy oraz dojrzewanie psychiczne młodzieży, informują naukowcy z Instituto de Salud Global (ISGlobal) w Barcelonie. Takie wnioski płyną z pionierskich badań prowadzonych przez Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital del Mar Medical Research Institute (IMIM) oraz ISGlobal. Badań, których celem było sprawdzenie wpływu orzechów włoskich na zdrowie ludzkie w tak kluczowym momencie, jakim jest okres dojrzewania.
      Orzechy są bogate w kwas alfa-linolenowy (ALA), który jest jednym z kluczowych elementów potrzebnych do prawidłowego rozwoju mózgu. Nie jest on syntetyzowany w organizmie, dlatego musimy dostarczać go z dietą. Okres dojrzewania do czas wielkich zmian biologicznych. Dochodzi do zmian hormonalnych, które stymulują rozwój synaps w płacie czołowym. To ten obszar mózgu, który umożliwia nam osiągnięcie dojrzałości neuropsychologicznej, zatem rozwój pełnych zdolności emocjonalnych i poznawczych. Neurony, dobrze odżywione dzięki ALA i podobnym kwasom tłuszczowym, mogą rozwijać się i tworzyć nowe silne synapsy, mówi główny autor badań, Jordi Julvez.
      W badaniach, których wyniki opublikowano na łamach eClinicalMedicine, wzięło udział 700 ochotników w wieku 11–16 lat. Podzielono ich na grupę kontrolną, w przypadku której nie zastosowano żadnych specjalnych zaleceń dietetycznych, oraz grupę badaną, której członkowie codziennie przez 6 miesięcy mieli jeść po 30 gramów orzechów włoskich.
      Okazało się, że osoby z grupy badanej, które w ciągu tych 6 miesięcy jadły orzechy przez co najmniej 100 dni (niekoniecznie po sobie następujących), wykazywały zwiększoną zdolność do koncentracji uwagi. Co więcej zaobserwowano, że u tych osób, które przed rozpoczęciem eksperymentu obserwowano objawy ADHD, doszło do poprawy zachowania, były w stanie bardziej się skupić i doszło do zmniejszenia u nich poziomu nadmiernej aktywności.
      Jakby tego było mało, w grupie badanej doszło do zwiększenia poziomu inteligencji płynnej. Inteligencja płynna utożsamiana jest z inteligencją wrodzoną, determinowana jest przez czynniki biologiczne, a nie proces nauczania.
      Generalnie rzecz biorąc, nie zauważyliśmy znaczących średnich różnic pomiędzy grupą badaną, a grupą kontrolną. Jednak gdy uwzględniliśmy czynnik wytrwałości w spełnianiu założeń eksperymentu, stwierdziliśmy, że ci z młodych ludzi, którzy najlepiej przestrzegali zasad dotyczących ilości spożywanych orzechów oraz liczby dni, przez które je spożywali, wykazali widoczną poprawę funkcjonowania neuropsychologicznego, dodaje Julvez.
      Autorzy badań zachęcają więc nastolatków, by co najmniej 3 razy w tygodniu zjedli garść orzechów. Przyczyni się to bowiem do lepszego rozwoju poznawczego.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...