Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Bezkrwawe operacje mózgu dzięki nowej laserowej platformie
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Nikogo chyba nie trzeba przekonywać, jak ważny jest mikrobiom dla naszego zdrowia. A raczej mikrobiomy, bo w coraz większym stopniu odkrywamy znaczenie wszystkich mikroorganizmów występujących wewnątrz i na zewnątrz nas. Naukowcy z Michigan State University i Georgia State University poinformowali, że mikroorganizmy odgrywają ważną rolę we wczesnym rozwoju mózgu, szczególnie obszarów odpowiedzialnych za kontrolę stresu, zachowań społecznych i podstawowych funkcji organizmu. A skoro tak, to rodzi się podejrzenie, że współczesne techniki porodu, zmieniające mikrobiom matki lub wpływające na kontakt dziecka z nim, mogą wpływać na rozwój mózgu noworodka.
Pierwszy masowy bezpośredni kontakt mikroorganizmami mamy podczas porodu. Zostajemy skolonizowali zarówno przez mikrobiom z kanału rodnego matki, jak i przez mikroorganizmy z otoczenia. Dochodzi do tego w czasie, gdy nasze mózgi doświadczają poważnego przemodelowania. Uczeni już wcześniej donosili – na podstawie badań na modelu mysim – że mikroorganizmy te mogą wpływać na rozwój mózgu. Tym razem skupili się na jądrze przykomorowym podwzgórza, jednym z najważniejszych regionów w mózgu ssaków.
W ramach eksperymentów porównywali mózgi myszy urodzonych w standardowych warunkach z myszami urodzonymi w warunkach sterylnych. Okazało się, że u tych, które urodziły się w sterylnych warunkach występowało mniej komórek w jądrze przykomorowym podwzgórza, a zagęszczenie komórek było mniejsze. Zjawisko takie zaobserwowano nie tylko u mysich noworodków, ale i u dorosłych myszy. Wskazuje to nabywany przy porodzie mikrobiom długoterminowo może kształtować mózgi ssaków. Dodatkowo już podczas wcześniejszych badań naukowcy stwierdzili, że myszy urodzone w standardowych warunkach mają o 6% większe przodomózgowie, niż myszy urodzone w sterylnym środowisku. Teraz sprawdzili, czy efekt ten widoczny jest też u myszy dorosłych. Okazało się, że tak.
Takie wyniki badań każą zastanowić się, czy takie współczesne praktyki jak okołoporodowe podawanie antybiotyków – co zmienia mikrobiom matki – lub cesarskie cięcie, które wpływa na kontakt noworodka z mikrobiomem kanału rodnego, nie wpływa na późniejszy rozwój mózgu dziecka.
Podsumowując, nasze badania wykazały, że mikrobiom wpływa na rozwój jądra przykomorowego podwzgórza. Co więcej, może to wyjaśnić, dlaczego dorosłe myszy urodzone w sterylnych warunkach wykazują deficyty społeczne, mają podwyższony poziom stresu i niepokoju. Jądro przykomorowe podwzgórza decyduje o tych zachowaniach, stwierdzają naukowcy w artykule The microbiota shapes the development of the mouse hypothalamic paraventricular nucleus.
« powrót do artykułu -
przez KopalniaWiedzy.pl
We Wrocławiu wykonano unikatową w skali świata operację wrodzonej wady tchawicy u 4-letniej Hani ze Szczecina. Zabieg poprzedzono wielomiesięcznymi przygotowaniami i konsultacjami z zagranicznymi specjalistami. O udział w nim poproszono profesora Patricio Varelę z Chile, jednego z najwybitniejszych na świecie specjalistów ds. wad rozwojowych klatki piersiowej i chirurgii tchawicy u dzieci.
Hania od urodzenia miała świszczący oddech. Początkowo uznano, że to przejściowa sapka niemowlęca. Gdy jednak nic się nie zmieniało, pojawiła się bardzo poważna diagnoza. Dziewczyna ma znaczne zwężenie światła tchawicy i dodatkowe niefizjologiczne odgałęzienie tchawicy. Dziecko było przez dwa lata diagnozowane i leczone w Szczecinie.
Hania rozwijała się podobnie do innych dzieci, ale od urodzenia głośno oddychała i z miesiąca na miesiąc było coraz gorzej. Lekarze liczyli na to, że wraz ze wzrostem problemy miną. Niestety w pewnym momencie lekarz poinformował nas, że wada jest poważna i nikt w Szczecinie nie podejmie się operacji, ale jednocześnie wskazał, gdzie szukać pomocy. To wtedy dowiedzieliśmy się, że najlepszym adresem będzie USK we Wrocławiu i prof. Dariusz Patkowski, uznany ekspert zajmujący się chirurgią dziecięcą, mówi pani Wioletta, mama Hani.
Gdy dokumentacja małej pacjentki trafiła do Wrocławia, zespół z Uniwersyteckiego Szpitala Klinicznego rozpoczął wielomiesięczne konsultacje i przygotowania. Obejmowały one m.in. wydrukowanie modelu tchawicy dziewczynki, na którym planowano zabieg. Dziesiątki osób brały udział w licznych symulacjach przygotowujących do operacji.
Największym problemem u Hani było to, że na długości około 5 centymetrów, tchawica była zwężona do średnicy około trzech milimetrów, a powinna mieć co najmniej 6-8 milimetrów – wyjaśnia profesor Patkowski, kierownik Kliniki Chirurgii i Urologii Dziecięcej USK we Wrocławiu. W związku z tym dziewczynka miała ograniczony dostęp do odpowiedniej ilości powietrza, szczególnie przy wysiłku. O ile jeszcze w spoczynku, to mogło wystarczyć, to już przy jakiejkolwiek aktywności fizycznej pojawiała się duszność. Hania miała bardzo dużo szczęścia, dlatego że jakakolwiek większa infekcja dróg oddechowych mogłaby spowodować niewydolność oddechową.
Operacja polegała na podłużnym przecięciu tchawicy w płaszczyźnie przednio-tylnej, zsunięciu jej końców i ponownym zespoleniu w celu trwałego poszerzenia światła tchawicy. Była niezwykle ryzykowna. W razie niepowodzenia brak było bowiem alternatywnych rozwiązań. Ponadto w trakcie operacji konieczne było wyłączenie oddechu dziecka i rozpoczęcie krążenia pozaustrojowego.
Rodzice Hani z niepokojem czekali za drzwiami sali operacyjnej. W końcu wyszedł do nich profesor Patkowski i powiedział, że operacja się udała. Na ostateczne efekty trzeba będzie poczekać do wygojenia blizn. Hania właśnie wraca do domu, gdzie czeka ją rehabilitacja. A rodzice Hani przyznają, że w pierwszych dniach po operacji w nocy przykładali ucho do piersi córki, by przekonać się, że wszystko w porządku. Świszczący oddech zniknął.
Niezwykły zabieg miał miejsce 3 lipca, a dzisiaj, po niemal miesiącu spędzonym w szpitalu, Hania wraca do domu.
Gość z Chile, profesor Patricio Jose Varela Balbontin specjalizuje się w chirurgii dziecięcej. Uczył się jej m.in. w Centrum Medycznym Le Bonheur Children w Memphis. Międzynarodową sławę zyskał dzięki osiągnięciom w leczeniu wad rozwojowych klatki piersiowej i chirurgii tchawicy u najmłodszych. Podczas pobytu we Wrocławiui wygłosił wykłady „Congenital Tracheal Anomalies” i „Pectus Excavatum. Where we came from”. Oba były transmitowane przez internet w ramach międzyanrodowej organizacji „International Pediatric Live Surgery Online Group”, której prezesem jest prof. Patkowski.
Profesor Patkowski specjalizuje się w chirurgii i urologii dziecięcej. Jest kierownikiem Katedry i Kliniki Chirurgii i Urologii Dziecięcej Uniwersytetu Medycznego we Wrocławiu. W ubiegłym roku otrzymał nagrodę „Best of the best in Pediatric Surgery 2024” przyznawaną przez Cincinnati Children’s Hospital Medical Center. Uczony specjalizuje się w chirurgii endoskopowej, szczególnie u noworodków z wadami wrodzonymi. Jest autorem laparoskopowej techniki PIRS stosowanej od 20 lat do leczenia przepukliny pachwinowej na całym świecie. Wykonywał operacje w ponad 20 krajach świata.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Robot chirurgiczny, który uczył się fachu obserwując materiały wideo z prawdziwych operacji, samodzielnie przeprowadził zabiegi ex vivo usunięcia woreczka żółciowego. Podczas testów robot operował realistycznego manekina, w którym umieszczono ludzkie tkanki. Maszyna reagowała na polecenia głosowe i uczyła się w trakcie zabiegów, podobnie jak początkujący chirurg uczy się podczas operacji od swojego mentora. Robot radził sobie nawet z nieprzewidzianymi sytuacjami, na jakie natykają się chirurdzy w czasie codziennej pracy.
Nasze eksperymenty oznaczają przejście od robotów chirurgicznych zdolnych do wykonania określonego zadania, do robotów rozumiejących całość procedury chirurgicznej. To kluczowy krok w kierunku rozwoju gotowych do pracy autonomicznych systemów robotycznych, które mogą działać w nieprzewidywalnym środowisku chirurgicznym, stwierdził Axel Krieger, robotyk medyczny z Uniwersytetu Johnsa Hopkinsa.
Już w 2022 roku zbudowany przez Kriegera robot STAR (Smart Tissue Autonomous Robot) przeprowadził pierwszą autonomiczną operacją na żywym zwierzęciu. Był to zabieg laparoskopowy na świni. Jednak robot potrzebował specjalnych oznaczeń na tkance, pracował we w pełni kontrolowanym środowisku i działał według ściśle określonego planu. Jak mówi sam Krieger, było to jak uczenie autonomicznego samochodu poruszania się po ściśle wytyczonej drodze. Nowy system jest jak nauczenie robota nawigowania po dowolnej drodze, w każdych warunkach, tak, by w sposób inteligentny reagował na każdy problem, jaki napotka.
Nowa maszyna SRT-H (Hierarchical surgical robot transformer) przeprowadza prawdziwą operację, w czasie rzeczywistym adaptuje się do indywidualnej budowy anatomicznej operowanego, podejmuje decyzje i wprowadza korekty, jeśli napotka jakieś trudności. Robot został wyposażony w taką samą infrastrukturę uczącą się, co ChatGPT i jest interaktywny. Reaguje na komendy głosowe jak „uchwyć szyjkę pęcherzyka żółciowego” czy „przesuń lewe ramię nieco w lewo”. Nie tylko słucha tych komend, ale się z nich uczy.
Robot przeprowadził osiem zabiegów wycięcia woreczka żółciowego. Wszystkie perfekcyjnie i bez pomocy człowieka. Główny autor badań, Ji Woong „Brian” Kim z Uniwersytetu Stanforda mówi, że to niezwykle ważny moment pokazujący, że możliwe jest pokonanie barier na drodze do używania autonomicznych robotów na sali operacyjnej.
Przeprowadzana przez robota operacja usunięcia pęcherzyka żółciowego składa się z 17 precyzyjnych kroków i trwa kilka minut. Maszyna musi prawidłowo zidentyfikować przewody żółciowe i naczynia krwionośne, precyzyjnie je uchwycić, założyć w odpowiednich miejscach zaciski i wyciąć pęcherzyk. SRT-H uczył się oglądając wcześniej operacje przeprowadzane na martwej świni. Wideo zostało też przez chirurgów opisane.
Zabieg usunięcia pęcherzyka zajął robotowi więcej czasu niż chirurgowi, ale uzyskane efekty były porównywalne z efektami pracy doświadczonego chirurga. Działał bezbłędnie niezależnie od budowy anatomicznej pacjenta. Radził sobie w nieznanych sytuacjach, gdy na przykład badacze zmienili pozycję wyjściową robota czy dodali barwnik wyglądający jak krew, który zmienił wygląd pęcherzyka i otaczających go tkanek. Moim zdaniem pokazuje to, że autonomiczne roboty są zdolne do samodzielnego wykonywania operacji, stwierdza Krieger.
W najbliższej przyszłości naukowcy planują wytrenować robota do innych zadań chirurgicznych i go przetestować.
Źródło: SRT-H: A hierarchical framework for autonomous surgery via language-conditioned imitation learning, https://www.science.org/doi/10.1126/scirobotics.adt5254
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czy coś może łączyć zdrowe noworodki z osobami cierpiącymi na chorobę Alzhemera? Okazuje się, że tak. Jak donosi międzynarodowy zespół naukowy, u jednych i drugich występuje podniesiony poziom biomarkerów odpowiedzialnych za alzheimera. Mowa tutaj o fosforylowanym białku tau, a konkretnie o jego odmianie p-tau217. Jest ono od dawna wykorzystywane w testach diagnostycznych choroby Alzheimera. A noworodki mają go więcej niż cierpiący na alzheimera.
Zwiększenie poziomu p-tau217 we krwi ma być oznaką odkładania się w mózgu białka β-amyloidowego w postaci blaszek amyloidowych. Oczywistym jest, że u noworodków takie patologiczne zmiany nie występują, zatem u nich zwiększenie p-tau217 musi być odzwierciedleniem innego, całkowicie zdrowego, procesu.
Badacze ze Szwecji, Australii, Norwegii i Hiszpanii przeanalizowali próbki krwi ponad 400 osób. Były wśrod nich noworodki, wcześniaki, młodzi dorośli, starsi dorośli oraz osoby ze zdiagnozowaną chorobą Alzheimera. Okazało się, że najwyższy poziom p-tau217 występował u noworodków, a szczególnie u wcześniaków. W ciągu pierwszych miesięcy życia poziom ten spadał, aż w końcu stabilizował się na poziomie osób dorosłych.
Wydaje się, że o ile u osób z chorobą Alzheimera zwiększony poziom p-tau217 powiązany jest z tworzeniem się splątków tau, które uszkadzają mózg, to wydaje się, że u noworodków wspomaga on zdrowy rozwój mózgu, wzrost neuronów i ich łączenie się z innymi neuronami. Badacze zauważyli też związek z terminem porodu, a poziomem p-tau217. Im wcześniej się dziecko urodziło, tym wyższy miało poziom tego biomarkera, co może sugerować, że wspomaga on gwałtowny rozwój mózgu w trudnych warunkach wcześniactwa.
Najbardziej interesującym aspektem odkrycia jest przypuszczenie, że być może na początkowych etapach życia nasze mózgi mogą posiadać mechanizm chroniący przed szkodliwym wpływem białek tau. Jeśli zrozumiemy, jak ten mechanizm działa i dlaczego tracimy go z wiekiem, może uda się opracować nowe metody leczenia. Jeśli nauczymy się, w jaki sposób mózgi noworodków utrzymują tau w ryzach, być może będziemy w stanie naśladować ten proces, by spowolnić lub zatrzymać postępy choroby Alzheimera, mówi główny autor badań, Fernando Gonzalez-Ortiz.
Źródło: The potential dual role of tau phosphorylation: plasma phosphorylated-tau217 in newborns and Alzheimer’s disease, https://academic.oup.com/braincomms/article/7/3/fcaf221/8158110
« powrót do artykułu -
przez KopalniaWiedzy.pl
Koreańscy uczeni poinformowali na łamach Occupational & Environmental Medicine, że długie godziny pracy – zdefiniowane tutaj jako praca przez co najmniej 52 godziny w tygodniu – mogą zmieniać strukturę mózgu. Zmiany dotyczą przede wszystkim obszarów powiązanych z regulacją emocji i funkcjami wykonawczymi, jak pamięć robocza i rozwiązywanie problemów. Nadmierna praca powoduje zmiany adaptacyjne w mózgu, które mogą negatywnie wpływać na nasze zdrowie.
Dostarczamy nowych neurobiologicznych dowodów łączących wydłużony czas pracy ze zmianami strukturalnymi mózgu, podkreślając potrzebę dalszych badań, by zrozumieć długoterminowe skutki poznawcze i emocjonalne przepracowania, czytamy w opublikowanym artykule.
Nauka zna psychologiczne skutki przepracowania, jednak niewiele wiadomo, w jaki sposób wpływa ono na strukturę mózgu. Już wcześniej pojawiały się sugestie mówiące, że związane z nadmierną pracą chroniczny stres i brak odpoczynku mogą zmieniać budowę mózgu, jednak były one poparte niewielką liczbą dowodów.
Autorzy najnowszych badań przyjrzeli się 110 ochotnikom. Grupa składała się z lekarzy, pielęgniarek oraz innych pracowników służby zdrowia. Wśród nich były 32 osoby (28%), które pracowały co najmniej 52 godziny w tygodniu.
Osoby, które spędzały więcej czasu w pracy to zwykle osoby młodsze (przeważnie poniżej 45. roku życie) i lepiej wykształcone, niż osoby pracujące mniej. Różnice w objętości poszczególnych obszarów mózgu oceniano za pomocą badań morfometrycznych opartych o pomiar voksela (VBM). Analizy wykazały istnienie znaczących zmian u osób, które pracowały powyżej 52 godzin tygodniowo. Miały one średnio o 19-procent większą objętość zakrętu czołowego środkowego, który jest zaangażowany w skupienie uwagi, pamięć roboczą i przetwarzanie języka. Powiększonych było też 16 innych regionów, w tym zakręt czołowy górny, odpowiedzialny m.in. za funkcje wykonawcze (podejmowanie decyzji, myślenie abstrakcyjne, planowanie).
Autorzy badań podkreślają, że badania przeprowadzili na niewielkiej grupie osób i uchwyciły one tylko różnie istniejące w konkretnym momencie. Nie można zatem na ich podstawie wyciągać jednoznacznych wniosków co do skutków i przyczyn. Nie wiadomo, czy zmiany te są skutkiem czy przyczyną przepracowywania się.
Mimo to badania wskazują na istnienie potencjalnego związku pomiędzy zmianami objętości mózgu a długimi godzinami pracy. Zmiany zaobserwowane u osób przepracowujących się mogą być adaptacją do chronicznego stresu, stwierdzili naukowcy.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.