Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Gleba – największy magazyn węgla z atmosfery

Recommended Posts

Nad odpowiednimi sposobami przyjaznego klimatowi gospodarowania glebą, tak aby wzbogacić ją w huminy – materię organiczną odporną na rozkład mikrobiologiczny – pracuje międzynarodowy zespół naukowy z udziałem Polaków.

Gleba jest globalnie największym magazynem węgla, który jest wiązany w glebowej materii organicznej. Niestety, trwałość jej na ogół nie jest wysoka, gdyż z czasem przy udziale mikroorganizmów ulega ona mineralizacji, a uwolniony węgiel jest emitowany do atmosfery. Zmiany klimatyczne związane z emisją dwutlenku węgla skłaniają badaczy do szukania sposobów na zwiększenie w glebie zawartości węgla, który jest wiązany w bardziej trwałych formach.Rośliny pobierają dwutlenek węgla z powietrza i wbudowują węgiel w swoje tkanki. Po obumarciu rośliny – w wyniku skomplikowanych procesów biochemicznych – tkanki te przekształcają się w glebową materię organiczną. W ten sposób węgiel jest usuwany z atmosfery i magazynowany w roślinach i glebie.

Międzynarodowe badania polowe

Naukowcy wybiorą te metody agrotechniczne, które mogą wpłynąć na optymalną zawartość węgla organicznego w glebie. Określą stabilność glebowej materii organicznej w zależności od warunków gospodarowania w różnych warunkach klimatycznych Europu i USA.

Mamy dostęp do unikatowych wieloletnich badań polowych prowadzonych przez partnerów na różnych glebach w odmiennych warunkach klimatycznych – mówi kierownik projektu prof. Jerzy Weber z Instytutu Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska Uniwersytetu Przyrodniczego we Wrocławiu.

Liderem konsorcjum „SOMPACS – soil management effects on Soil Organic Matter Properties And Carbon Sequestration” jest Uniwersytet Przyrodniczy we Wrocławiu, pozostałe polskie ośrodki zaangażowane w projekt to Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Instytut Agrofizyki PAN w Lublinie, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Uniwersytet Wrocławski oraz Grupa Producentów Rolnych TERRA z Prusic koło Złotoryi.

Huminy odporne na rozkład

Badacze sprawdzą, jak różne sposoby użytkowania i uprawiania gleby wpływają na tworzenie się w glebie frakcji najbardziej odpornej na procesy rozkładu. Ta frakcja to tzw. huminy.

Jak wyjaśnia prof. Jerzy Weber, substancje humusowe zawarte w glebie bada się rozpuszczając je w alkaliach, dzięki czemu mogą być wydzielane jej poszczególne frakcje. Na tej zasadzie uzyskano preparat immunologiczny prof. Tołpy, który na rynku farmaceutycznym zrobił furorę w latach 80. XX wieku.

Huminy są trudne do badania, bo nie rozpuszczają się w alkaliach. Frakcja ta będzie we Wrocławiu izolowana poprzez usuwanie wszystkich pozostałych składników materiału glebowego metodą opublikowaną przez nas w 2021 roku. Na uniwersytecie Limerick w Irlandii będzie wykorzystywana do tego metoda ekstrakcji, a frakcje uzyskane obu metodami będą analizowane przez wszystkich uczestników międzynarodowego konsorcjum. Będziemy dążyć do określenia w jaki sposób różne użytkowanie gleby wpływa na zawartość i właściwości humin – tłumaczy prof. Weber.

Przyjazne klimatowi sposoby gospodarowania glebą

Badacze pobiorą próbki z ośmiu wieloletnich doświadczeń polowych z różnymi systemami gospodarowania glebą na Litwie, we Włoszech, w Irlandii i w Polsce (tu stosowanymi od wieku), a także z najdłuższego na świecie brytyjskiego eksperymentu Broadbalk prowadzonego nieprzerwanie przez od 178 lat.

Wśród tych systemów jest uprawa konwencjonalna lub bezorkowa, nawożenie mineralne lub organiczne, uprawa z międzyplonami lub bez nich, grunty orne lub użytki zielone oraz gleby uprawiane albo nieuprawiane.

Eksperymenty będą również prowadzone na polach produkcyjnych, gdzie oprócz stosowanych metod uprawy zastosowane zostaną dodatki stymulujące wzrost korzeni (komercyjne produkty humusowe, biowęgiel, poferment z biogazowni). Wpływ tych dodatków na zawartość i właściwości glebowej materii organicznej zostanie zbadany w doświadczeniach polowych, a także w badaniach inkubacyjnych nad jej rozkładem mikrobiologicznym. Równolegle do pobierania próbek gleby, w doświadczeniach polowych będzie określone plonowanie, a także w warunkach polowych będzie mierzona emisja CO2 z gleby.

Podstawowe właściwości gleby zostaną uzupełnione analizą aktywności enzymatycznej, badaniem retencji wody w glebie, hydrofobowości gleby i stabilności jej struktury, składu mineralogicznego koloidów glebowych, a także specjalistycznymi badaniami właściwości mikrobiologicznych, w tym genetyki mikrobiomu i mykobiomu – wyjaśnia prof. Weber.

Najwyższa nagroda w europejskim konkursie

Projekt międzynarodowego konsorcjum, którego liderem jest Uniwersytet Przyrodniczy we Wrocławiu, został najwyżej oceniony w pierwszym zewnętrznym konkursie The European Joint Programme EJP SOIL Towards climate-smart sustainable management of agricultural soils.

Celem konkursu jest przyjazne dla klimatu zrównoważone gospodarowanie glebami rolniczymi, co daje możliwość połączenia kwestii zmian klimatycznych z szeroko rozumianym rolnictwem. Z około 80 zgłoszonych projektów do finansowania wybrano 11. Najwyżej oceniono właśnie „SOMPACS”.

Badania potrwają do 2025. Poza polskimi instytucjami realizować je będzie: University of Limerick z Irlandii, University of Rostock z Niemiec, University of Wyoming w Stanach Zjednoczonych, University of Naples we Włoszech, Vytautas Magnis University i Agricultural Academy w Kownie na Litwie, Rothamsted Research w Harpenden w Wielkiej Brytanii. W Polsce badania będą finansowane przez Narodowe Centrum Badań i Rozwoju, które łącznie na ten cel przeznaczyło 200 tysięcy euro.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) dostarczył pierwszy w historii pełny profil molekularny i chemiczny atmosfery planety pozasłonecznej. Inne teleskopy przekazywały już wcześniej dane dotyczące pojedynczych składników atmosfer, jednak dzięki Webbowi poznaliśmy wszystkie atomy, molekuły, a nawet aktywne procesy chemiczne obecne w atmosferze odległej planety. Przekazane dane dają nam nawet wgląd w ukształtowanie chmur, dowiedzieliśmy się, że są one pofragmentowane, a nie pokrywają planety nieprzerwaną warstwą.
      Przekazane informacje dotyczą atmosfery planety WASP-39b, na której trenowano instrumenty Webba. To gorący saturn, zatem planeta o masie dorównującej Saturnowi, ale znajdująca się na orbicie bliższej gwiazdy niż Merkury. WASP-39b oddalona jest od Ziemi o około 700 lat świetlnych.
      Natalie Batalha z University of California w Santa Cruz (UC Santa Cruz), która brała udział w koordynacji badań, mówi, że dzięki wykorzystaniu licznych instrumentów Webba działających w podczerwieni udało się zdobyć dane, które dotychczas były dla ludzkości niedostępne. Możliwość uzyskania takich informacji całkowicie zmienia reguły gry, stwierdza uczona.
      Badania zaowocowały przygotowaniem pięciu artykułów naukowych, z których trzy są właśnie publikowane, a dwa recenzowane.
      Jednym z bezprecedensowych odkryć dokonanych przez Webba jest zarejestrowanie obecności dwutlenku siarki, molekuły powstającej w wyniku reakcji chemicznych zapoczątkowywanych przez wysokoenergetyczne światło docierające od gwiazdy macierzystej. Na Ziemi w podobnym procesie powstaje ochronna warstwa ozonowa.
      Po raz pierwszy w historii mamy dowód na reakcję fotochemiczną na egzoplanecie, mówi Shang-Min Tasi z Uniwersytetu Oksfordzkiego, który jest głównym autorem artykułu na temat pochodzenia dwutlenku siarki w atmosferze WASP-39b. Odkrycie to jest niezwykle ważne dla zrozumienia atmosfer egzoplanet. Informacje dostarczone przez Webba zostaną użyte do zbudowania fotochemicznych modeli komputerowych, które pozwolą nam wyjaśnić zjawiska zachodzące w atmosferze egoplanet. To z kolei zwiększy nasze możliwości poszukiwania życia na planetach pozasłonecznych. Planety są zmieniane i modelowane przez promieniowanie ich gwiazd macierzystych. Takie właśnie zmiany umożliwiły powstanie życia na Ziemi, wyjaśnia Batalha.
      WASP-39b znajduje się aż ośmiokrotnie bliżej swojej gwiazdy niż Merkury Słońca. To zaś okazja do zbadania wpływu gwiazd na egzoplanety i lepszego zrozumienia związków pomiędzy gwiazdą a planetą. Specjaliści będą mogli dzięki temu lepiej pojąć zróżnicowanie planet we wszechświecie.
      Poza dwutlenkiem siarki Webb wykrył też obecność sodu, potasu, pary wodnej, dwutlenku węgla oraz tlenku węgla. Nie zarejestrował natomiast oczywistych śladów obecności metanu i siarkowodoru. Jeśli gazy te są obecne w atmosferze, to jest ich niewiele.
      Astrofizyk Hannah Wakeford z University of Bristol w Wielkiej Brytanii, która specjalizuje się w badaniu atmosfer egzoplanet jest zachwycona danymi z Webba. Przewidywaliśmy, co może nam pokazać, ale to, co otrzymaliśmy, jest bardziej precyzyjne, zróżnicowane i piękne niż sądziliśmy, stwierdza.
      Teleskop dostarczył tak szczegółowych informacji, że specjaliści mogą też określać wzajemne stosunki pierwiastków, np. węgla do tlenu czy potasu do tlenu. Tego typu informacje pozwalają zrekonstruować sposób tworzenia się planety z dysku protoplanetarnego otaczającego jej gwiazdę macierzystą.
      Skład atmosfery WASP-39b wskazuje, że w procesie powstawania dochodziło do licznych zderzeń i połączeń z planetozymalami, czyli zalążkami planet. Obfitość siarki w stosunku do tlenu wskazuje prawdopodobnie, że doszło do znaczącej akrecji planetozymali. Dane pokazują też, że tlen występuje w znacznie większej obfitości niż węgiel, a to potencjalnie oznacza, że WASP-39b uformowała się z daleka od gwiazdy, mówi Kazumasa Ohno z UC Santa Cruz.
      Dzięki Webbowi będziemy mogli dokładnie przyjrzeć się atmosferom egzoplanet. To niezwykle ekscytujące, bo całkowicie zmieni naszą wiedzę. I to jedna z najlepszych stron bycia naukowcem, dodaje Laura Flagg z Cornell University.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Atmosfera Jowisza słynna jest ze swoich wielkich kolorowych wirów. Ma też jednak mniej znaną niezwykłą cechę. Jej górna część jest wyjątkowo gorąca. O setki stopni cieplejsza, niż być powinna. Teraz naukowcy poinformowali o odkryciu gigantycznej, rozciągającej się na 130 000 kilometrów fali ciepła o temperaturze przekraczającej 700 stopni.
      Do Jowisza dociera ponad 25-krotnie mniej promieniowania słonecznego niż do Ziemi. Z obliczeń wynika, że górne partie jego atmosfery powinny mieć temperaturę -70 stopni Celsjusza. Tymczasem pomiary wykonywane w różnych miejscach wskazują, że w górnych partiach chmur panują temperatury powyżej 400 stopni Celsjusza.
      James O'Donoghue z Japońskiej Agencji Kosmicznej (JAXA) stworzył wraz z kolegami pierwszą mapę górnych warstw atmosfery Jowisza, która pozwalała na zidentyfikowanie dominujących źródeł ciepła w atmosferze. Teraz uczeni poinformowali, że za podgrzewanie atmosfery mogą odpowiadać zorze polarne.
      Zorze znamy też z Ziemi, jednak o ile na Błękitnej Planecie jest to zjawisko czasowe, do którego dochodzi podczas zwiększonej aktywności Słońca, o tyle na Jowiszu zorze istnieją bez przerwy, zmienia się tylko ich intensywność. Naukowcy z JAXA zauważyli, że potężne zorze rozgrzewają atmosferę wokół biegunów Jowisza do temperatury ponad 700 stopni Celsjusza, a później ciepło to jest roznoszone przez wiatr wokół całej planety.
      Uczeni odkryli, wspomnianą na wstępie, szczególnie intensywną falę gorąca bezpośrednio pod zorzą północną i stwierdzili, że fala ta przemieszcza się w stronę równika z prędkością tysięcy kilometrów na godzinę. Pojawiła się ona prawdopodobnie w wyniku silniejszego impulsu wiatru słonecznego, który zderzył się z polem magnetycznym Jowisza i dodatkowo podgrzał atmosferę.
      Zorze bez przerwy podgrzewają atmosferę Jowisza, a fale, jak ta przez nas odkryta, są dodatkowym ważnym źródłem energii, stwierdził O'Donoghoue podczas odczytu wygłoszonego w trakcie Europlanet Science Congress (EPSC) 2022 w Granadzie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od niemal 1,5 roku na powierzchni Marsa pracuje MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), które wytwarza tlen z marsjańskiej atmosfery. Urządzenie, znajdujące się na pokładzie łazika Perseverance, trafiło na Czerwoną Planetę w lutym 2021, a pierwszy tlen wytworzyło 20 kwietnia.
      Naukowcy z MIT i NASA informują, że do końca 2021 roku MOXIE uruchamiano siedmiokrotnie, podczas różnych pór roku, w różnych warunkach atmosferycznych, zarówno w ciągu dnia jak i nocy. Za każdym razem eksperymentalny instrument osiągał swój cel i produkował 6 gramów tlenu na godzinę. To mniej więcej tyle co średniej wielkości drzewo na Ziemi.
      Badacze przewidują, że zanim na Marsie wyląduje pierwszy człowiek, zostanie tam wysłana większa wersja MOXIE, zdolna do produkcji kilkunastu lub kilkudziesięciu kilogramów tlenu na godzinę. Takie urządzenie zapewniałoby nie tylko tlen do oddychania, ale również tlen potrzebny do wyprodukowania paliwa, dzięki któremu astronauci mogliby wrócić na Ziemię. MOXIE to pierwszy krok w kierunku realizacji tych zamierzeń.
      MOXIE to jednocześnie pierwsze urządzenie na Marsie, które wykorzystuje lokalne surowce – w tym przypadku dwutlenek węgla – do produkcji potrzebnych nam zasobów. To pierwsza w historii praktyczna demonstracja wykorzystania zasobów z innej planety i przekształcenia ich w coś, co można wykorzystać podczas misji załogowej, mówi profesor Jeffrey Hoffman z Wydziału Aeronautyki i Astronautyki MIT. Nauczyliśmy się bardzo wielu rzeczy, dzięki którym będziemy mogli przygotować większy system tego typu, dodaje Michael Hecht z Haystack Observatory na MIT, główny badacz misji MOXIE.
      Obecna wersja MOXIE jest niewielka. Urządzenie ma się zmieścić na pokładzie łazika. Ponadto zaprojektowano je z myślą o działaniu przez krótki czas. Prowadzenie eksperymentów z użyciem MOXIE zależy od innych badań prowadzonych przez łazik. Docelowa pełnowymiarowa wersja urządzenia miałaby pracować bez przerwy.
      MOXIE najpierw pobiera gaz z atmosfery Marsa. Przechodzi on przez filtr usuwający zanieczyszczenia. Gaz jest następnie kompresowany i przesyłany do instrumentu SOXE (Solid OXide Electrolyzer), który elektrochemicznie rozbija CO2 na jony tlenu i tlenek węgla. Jony są następnie izolowane i łączone, by uzyskać tlen molekularny O2. Jest ona następnie badany pod kątem ilości i czystości, a później uwalniany wraz z innymi gazami do atmosfery Marsa.
      Po uruchomieniu MOXIE najpierw przez kilka godzin się rozgrzewa, później przez godzinę produkuje tlen, a następnie kończy pracę. Każdy z siedmiu eksperymentów zaplanowano tak, by odbywał się w różnych warunkach. Naukowcy chcieli sprawdzić, czy urządzenie poradzi sobie z takim wyzwaniem. Atmosfera Marsa jest znacznie bardziej zmienna niż atmosfera Ziemi. Jej gęstość w ciągu roku może zmieniać się o 100%, a zmiany temperatury dochodzą do 100 stopni Celsjusza. Jednym z celów naszych eksperymentów było sprawdzenie, czy MOXIE będzie działało o każdej porze roku, wyjaśnia Hoffman. Dotychczas urządzenie produkowało tlen niemal o każdej porze dnia i nocy. Nie sprawdzaliśmy jeszcze, czy może pracować o świcie lub zmierzchu, gdy dochodzi do znacznych zmian temperatury. Ale mamy asa w rękawie. Testowaliśmy MOXIE w laboratorium i sądzę, że będziemy w stanie udowodnić, iż rzeczywiście radzi sobie o każdej porze doby, zapowiada Michael Hecht.
      Na tym jednak ambitne plany się nie kończą. Inżynierowie planują przeprowadzenie testów marsjańską wiosną, gdy gęstość atmosfery i poziom CO2 są najwyższe. Uruchomimy MOXIE przy największej gęstości atmosfery i spróbujemy pozyskać najwięcej tlenu jak to tylko będzie możliwe. Ustawimy najwyższą moc na jaką się odważymy i pozwolimy urządzeniu pracować tak długo, jak będziemy mogli, dodaje menedżer.
      MOXIE jest jednym z wielu eksperymentów na pokładzie Perseverance, nie może więc pracować bez przerwy, energia potrzebna jest też do zasilania innych urządzeń. Dlatego tez instrument jest uruchamiany i zatrzymywany, to zaś prowadzi do dużych zmian temperatury, które z czasem mogą niekorzystnie wpływać na urządzenie. Dlatego też inżynierowie analizują prace MOXIE pod kątem zużycia. To bardzo potrzebne badania. Jeśli bowiem mała wersja MOXIE wytrzyma wielokrotne uruchamianie, ogrzewanie, pracę i schładzanie się, to duża wersja, działająca bez przerwy, powinna być w stanie pracować przez tysiące godzin.
      Na potrzeby misji załogowej będziemy musieli przywieźć na Marsa wiele różnych rzeczy, jak komputery, skafandry czy pomieszczenia mieszkalne. Po co więc brać jeszcze ze sobą tlen, skoro można go wytworzyć na miejscu, mówi Hoffman.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zdaniem dwojga naukowców z Uniwersytetu Kalifornijskiego w Davis, atmosfera Marsa uformowała się w sposób, który przeczy współczesnym teoriom. Do takich wniosków doszli Sandrine Peron i Sujoy Mukhopadhyay, którzy przeprowadzili nowe analizy pochodzącego z wnętrza Marsa meteorytu Chassigny.
      Układ Słoneczny powstał z mgławicy gazu i pyłu, które utworzyły Słońce i planety. Chronologię jego powstawania można odtworzyć badając ilość poszczególnych pierwiastków i stosunki ich izotopów.
      Obecne teorie mówią, że planety skaliste, jak Mars, uzyskały pierwiastki lotne – jak np. wodór, tlen czy gazy szlachetne – z otaczającej je mgławicy przedsłonecznej podczas wczesnych etapów formowania się. Pierwiastki te najpierw rozpuściły się w płaszczu planety skalistej – który wówczas był jednym wielkim oceanem magmy – a gdy magma stygła i się krystalizowała, doszło do jej odgazowania i te pobrane z mgławicy pierwiastki trafiły do atmosfery planet, skąd powoli uciekały w przestrzeń kosmiczną. Dodatkowym źródłem pierwiastków lotnych w planetach skalistych były zaś meteoryty skaliste, chondryty, które rozbijały się o ich powierzchnię.
      Jeśli taka teoria jest prawdziwa, to należałoby się spodziewać, że pierwiastki, jakie znajdziemy we wnętrzu planety, pochodzą głównie z mgławicy protoplanetarnej lub są mieszaniną pierwiastków z mgławicy i chondrytów. Natomiast pierwiastki lotne w atmosferze powinny pochodzić głównie z chondrytów, gdyż te pochodzące z mgławicy zdążyły się w dużej mierze ulotnić.
      Peron i Mukhopadhyay zbadali izotopy kryptonu w meteorycie. Jako że stosunki izotopów kryptonu w mgławicy przedsłonecznej i w chondrytach są różne, badanie pozwala ustalić, skąd pochodzi krypton we wnętrzu Marsa. Okazało się, że we wnętrzu Marsa znajduje się krypton pochodzący z chondrytów, a nie z mgławicy.
      Odkrycie to wskazuje, że chondryty dostarczały pierwiastki lotne do wnętrza Marsa znacznie wcześniej, niż sądzono, jeszcze w czasie, gdy obecna była mgławica przedsłoneczna. Dlatego też naukowcy z UC Davis uważają, że pierwiastki lotne w atmosferze planety nie pochodzą z odgazowania płaszcza, a zostały przechwycone bezpośrednio z mgławicy. Ta zaś przestała istnieć około 10 milionów lat po narodzinach Układu Słonecznego. To zaś rodzi pytanie, w jaki sposób pierwiastki te przetrwały przez tak długi czas w atmosferze. Być może zaraz po uformowaniu na Marsie panowały niskie temperatury i pierwiastki zostały uwięzione w czapach lodowych na biegunach planety.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy przed 10 000 lat ludzkość zajęła się rolnictwem, doprowadziło to nie tylko do olbrzymich zmian społecznych czy politycznych. Zajmowanie pod uprawę coraz większych areałów, pojawienie się w końcu rolnictwa na skalę przemysłową doprowadziło też do zmiany składu atmosfery. Jeśli więc istnieją planety, których mieszkańcy również prowadzą rozwiniętą gospodarkę rolną, to ich atmosfery odczuły skutki takiej działalności. Istnieją w nich sygnatury, które powinien zauważyć Teleskop Webba (JWST).
      Ziemia pokryta jest olbrzymią mozaiką pól uprawnych, doszło do zmiany sposobu odbijania światła przez szatę roślinną ziemi, a pola uprawne – szczególnie z upraw przemysłowych – emitują do atmosfery różnego typu związki chemiczne. Zdaniem grupy astronomów, zmiany takie muszą być widoczne z przestrzeni kosmicznej. I podobne sygnatury są generowane na wszystkich egzoplanetach, gdzie istnieje rozwinięte rolnictwo. W przyszłych badaniach sygnatur cywilizacji technicznych, warto rozważyć możliwość istnienia sygnatur z „egzofarm”, uważa Jacob Haqq-Misra i jego koledzy Blue Marble Space Institute of Science w Seattle.
      Jedną z cech charakterystycznych rolnictwa jest nawożenie pól. Dzięki temu rośliny mają lepszy dostęp do azotu, jednego z podstawowych składowych życia. Podczas produkcji nawozów sztucznych używa się olbrzymich ilości amoniaku. Część z tego amoniaku ucieka do atmosfery. Utrzymuje się w niej jednak zaledwie przed kilka dni. Wykrycie więc amoniaku w atmosferze planety może oznaczać, że jest on tam ciągle dostarczany, a jego źródłem może być rolnictwo.
      Jednak sam amoniak to nie wszystko. Wykorzystywanie amoniaku wiąże się też z pojawieniem się tlenku diazotu (N2O), gazu cieplarnianego utrzymującego się w atmosferze przez ponad 100 lat. Jakby jeszcze tego było mało, rolnictwo jest też wielkim źródłem emisji metanu. Zatem astronomowie, którzy za pomocą JWST będą szukali śladów życia pozaziemskiego, mogą rozejrzeć się za sygnaturami wszystkich trzech związków. A zakres swoich badań mogą znacznie zawęzić, gdyż sygnatury świadczące o istnieniu egzofarm mogą pojawić się tylko na planetach, na których przebiega proces fotosyntezy, zatem w atmosferach takich planet powinny być też widoczne sygnatury H2O, O2 i CO2, mówi Haqq-Misra.
      Z naszych wyliczeń wynika, że jednoczesne wykrycie NH2 i N2O w atmosferze zawierającej H2O, O2 i CO2 może być sygnaturą istnienia dużego areału uprawnego, stwierdzają autorzy badań. I dodają, że Teleskop Webba powinien być w stanie wykryć amoniak występujący w ilości 5 części na milion w atmosferze planety krążącej wokół pobliskiego czerwonego karła, jeśli znajduje się w niej również sporo wodoru. Obecnie stężenie amoniaku w atmosferze Ziemi wynosi około 10 części na milion.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...