Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

To zorze podgrzewają atmosferę Jowisza. Astronomowie odkryli gigantyczną falę ciepła

Recommended Posts

Atmosfera Jowisza słynna jest ze swoich wielkich kolorowych wirów. Ma też jednak mniej znaną niezwykłą cechę. Jej górna część jest wyjątkowo gorąca. O setki stopni cieplejsza, niż być powinna. Teraz naukowcy poinformowali o odkryciu gigantycznej, rozciągającej się na 130 000 kilometrów fali ciepła o temperaturze przekraczającej 700 stopni.

Do Jowisza dociera ponad 25-krotnie mniej promieniowania słonecznego niż do Ziemi. Z obliczeń wynika, że górne partie jego atmosfery powinny mieć temperaturę -70 stopni Celsjusza. Tymczasem pomiary wykonywane w różnych miejscach wskazują, że w górnych partiach chmur panują temperatury powyżej 400 stopni Celsjusza.

James O'Donoghue z Japońskiej Agencji Kosmicznej (JAXA) stworzył wraz z kolegami pierwszą mapę górnych warstw atmosfery Jowisza, która pozwalała na zidentyfikowanie dominujących źródeł ciepła w atmosferze. Teraz uczeni poinformowali, że za podgrzewanie atmosfery mogą odpowiadać zorze polarne.

Zorze znamy też z Ziemi, jednak o ile na Błękitnej Planecie jest to zjawisko czasowe, do którego dochodzi podczas zwiększonej aktywności Słońca, o tyle na Jowiszu zorze istnieją bez przerwy, zmienia się tylko ich intensywność. Naukowcy z JAXA zauważyli, że potężne zorze rozgrzewają atmosferę wokół biegunów Jowisza do temperatury ponad 700 stopni Celsjusza, a później ciepło to jest roznoszone przez wiatr wokół całej planety.

Uczeni odkryli, wspomnianą na wstępie, szczególnie intensywną falę gorąca bezpośrednio pod zorzą północną i stwierdzili, że fala ta przemieszcza się w stronę równika z prędkością tysięcy kilometrów na godzinę. Pojawiła się ona prawdopodobnie w wyniku silniejszego impulsu wiatru słonecznego, który zderzył się z polem magnetycznym Jowisza i dodatkowo podgrzał atmosferę.

Zorze bez przerwy podgrzewają atmosferę Jowisza, a fale, jak ta przez nas odkryta, są dodatkowym ważnym źródłem energii, stwierdził O'Donoghoue podczas odczytu wygłoszonego w trakcie Europlanet Science Congress (EPSC) 2022 w Granadzie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z University of Rochester poinformowali o osiągnięciu nadprzewodnictwa w temperaturze pokojowej. Nadprzewodnictwo to stan, w którym ładunek elektryczny może podróżować przez materiał nie napotykając żadnych oporów. Dotychczas udawało się je osiągnąć albo w niezwykle niskich temperaturach, albo przy gigantycznym ciśnieniu. Gdyby odkrycie się potwierdziło, moglibyśmy realnie myśleć o bezstratnym przesyłaniu energii, niezwykle wydajnych silnikach elektrycznych, lewitujących pociągach czy tanich magnesach do rezonansu magnetycznego i fuzji jądrowej. Jednak w mamy tutaj nie jedną, a dwie łyżki dziegciu.
      O nadprzewodnictwie wysokotemperaturowym mówi się, gdy zjawisko to zachodzi w temperaturze wyższej niż -196,2 stopni Celsjusza. Dotychczas najwyższą temperaturą, w jakiej obserwowano nadprzewodnictwo przy standardowym ciśnieniu na poziomie morza jest -140 stopni C. Naukowcy z Rochester zaobserwowali nadprzewodnictwo do temperatury 20,6 stopni Celsjusza. Tutaj jednak dochodzimy do pierwszego „ale“. Zjawisko zaobserwowano bowiem przy ciśnieniu 1 gigapaskala (GPa). To około 10 000 razy więcej niż ciśnienie na poziomie morza. Mimo to mamy tutaj do czynienia z olbrzymim postępem. Jeszcze w 2021 roku wszystko, co udało się osiągnąć to nadprzewodnictwo w temperaturze do 13,85 stopni Celsjusza przy ciśnieniu 267 GPa.
      Drugim problemem jest fakt, że niedawno ta sama grupa naukowa wycofała opublikowany już w Nature artykuł o osiągnięciu wysokotemperaturowego nadprzewodnictwa. Powodem był użycie niestandardowej metody redukcji danych, która została skrytykowana przez środowisko naukowe. Artykuł został poprawiony i obecnie jest sprawdzany przez recenzentów Nature.
      Profesor Paul Chig Wu Chu, który w latach 80. prowadził przełomowe prace na polu nadprzewodnictwa, ostrożnie podchodzi do wyników z Rochester, ale chwali sam sposób przeprowadzenia eksperymentu. Jeśli wyniki okażą się prawdziwe, to zdecydowanie mamy tutaj do czynienia ze znaczącym postępem, dodaje uczony.
      Z kolei James Walsh, profesor chemii z University of Massachusetts przypomina, że prowadzenie eksperymentów naukowych w warunkach wysokiego ciśnienia jest bardzo trudne, rodzi to dodatkowe problemy, które nie występują w innych eksperymentach. Stąd też mogą wynikać kontrowersje wokół wcześniejszej pracy grupy z University of Rochester.
      Ranga Dias, który stoi na czele zespołu badawczego z Rochester zdaje sobie sprawę, że od czasu publikacji poprzedniego artykułu jego zespół jest poddawany bardziej surowej ocenie. Dlatego też prowadzona jest polityka otwartych drzwi. "Każdy może przyjść do naszego laboratorium i obserwować, jak dokonujemy pomiarów. Udostępniliśmy recenzentom wszystkie dane", dodaje. Uczony dodaje, że podczas ponownego zbierania danych na potrzeby poprawionego artykułu współpracowali z przedstawicielami Argonne National Laboratory oraz Brookhaven National Laboratory. Dokonywaliśmy pomiarów w obecności publiczności, zapewnia.
      Materiał, w którym zaobserwowano nadprzewodnictwo w temperaturze ponad 20 stopni Celsjusza, to wodorek lutetu domieszkowany azotem. Profesor Eva Zurek ze State University of New York mówi, że potrzebne jest niezależne potwierdzenie wyników grupy Diasa. Jeśli jednak okaże się, że są one prawdziwe, uczona uważa, że opracowanie nadprzewodnika ze wzbogaconego azotem wodorku lutetu pracującego w temperaturze pokojowej lub opracowanie technologii nadprzewodzących pracujących przy umiarkowanym ciśnieniu powinno być stosunkowo proste.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów poinformował o odkryciu jednych z najgorętszych gwiazd we wszechświecie. Temperatura powierzchni każdej z 8 gwiazd wynosi ponad 100 000 stopni Celsjusza. Są więc one znacznie gorętsze niż Słońce.
      Autorzy badań przeanalizowali dane pochodzące z Southern African Large Telescope (SALT). Ten największy na Półkuli Południowej teleskop optyczny posiada heksagonalne zwierciadło o wymiarach 10x11 metrów. Naukowcy przeprowadzili przegląd danych pod kątem bogatych w hel karłów i odkryli niezwykle gorące białe karły oraz gwiazdy, które się wkrótce nimi staną. Temperatura powierzchni najbardziej gorącego z nich wynosi aż 180 000 stopni Celsjusza. Dla porównania, temperatura powierzchni Słońca to „zaledwie” 5500 stopni Celsjusza.
      Jedna ze zidentyfikowanych gwiazd znajduje się w centrum odkrytej właśnie mgławicy o średnicy 1 roku świetlnego. Dwie inne to gwiazdy zmienne. Wszystkie z gorących gwiazd znajdują sie na zaawansowanych etapach życia i zbliżają do końca etapu białch karłów. Ze względu na niezwykle wysoką temperaturę gwiazdy te są ponadstukrotnie jaśniejsze od Słońca, co jest niezwykłą cechą jak na białe karły.
      Białe karły to niewielkie gwiazdy, rozmiarów Ziemi, ale o olbrzymiej masie, porównywalnej z masą Słońca. To najbardziej gęste z gwiazd wciaż zawierających normalną materię. Z kolei gwiazdy, które mają stać się białymi karłami są od nich kilkukrotnie większe, szybko się kurczą i w ciągu kilku tysięcy lat zmienią się w białe karły.
      Gwiazdy o temperaturze powierzchni 100 000 stopni Celsjusza lub więcej są niezwykle rzadkie. Byliśmy bardzo zdziwieni, gdyż znaleźliśmy ich aż tak wiele. Nasze odkrycie pomoże w zrozumieniu ostatnich etapów ewolucji gwiazd, mówi Simon Jeffery z Armagh Observatory and Planetarium, który stał na czele grupy badawczej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) dostarczył pierwszy w historii pełny profil molekularny i chemiczny atmosfery planety pozasłonecznej. Inne teleskopy przekazywały już wcześniej dane dotyczące pojedynczych składników atmosfer, jednak dzięki Webbowi poznaliśmy wszystkie atomy, molekuły, a nawet aktywne procesy chemiczne obecne w atmosferze odległej planety. Przekazane dane dają nam nawet wgląd w ukształtowanie chmur, dowiedzieliśmy się, że są one pofragmentowane, a nie pokrywają planety nieprzerwaną warstwą.
      Przekazane informacje dotyczą atmosfery planety WASP-39b, na której trenowano instrumenty Webba. To gorący saturn, zatem planeta o masie dorównującej Saturnowi, ale znajdująca się na orbicie bliższej gwiazdy niż Merkury. WASP-39b oddalona jest od Ziemi o około 700 lat świetlnych.
      Natalie Batalha z University of California w Santa Cruz (UC Santa Cruz), która brała udział w koordynacji badań, mówi, że dzięki wykorzystaniu licznych instrumentów Webba działających w podczerwieni udało się zdobyć dane, które dotychczas były dla ludzkości niedostępne. Możliwość uzyskania takich informacji całkowicie zmienia reguły gry, stwierdza uczona.
      Badania zaowocowały przygotowaniem pięciu artykułów naukowych, z których trzy są właśnie publikowane, a dwa recenzowane.
      Jednym z bezprecedensowych odkryć dokonanych przez Webba jest zarejestrowanie obecności dwutlenku siarki, molekuły powstającej w wyniku reakcji chemicznych zapoczątkowywanych przez wysokoenergetyczne światło docierające od gwiazdy macierzystej. Na Ziemi w podobnym procesie powstaje ochronna warstwa ozonowa.
      Po raz pierwszy w historii mamy dowód na reakcję fotochemiczną na egzoplanecie, mówi Shang-Min Tasi z Uniwersytetu Oksfordzkiego, który jest głównym autorem artykułu na temat pochodzenia dwutlenku siarki w atmosferze WASP-39b. Odkrycie to jest niezwykle ważne dla zrozumienia atmosfer egzoplanet. Informacje dostarczone przez Webba zostaną użyte do zbudowania fotochemicznych modeli komputerowych, które pozwolą nam wyjaśnić zjawiska zachodzące w atmosferze egoplanet. To z kolei zwiększy nasze możliwości poszukiwania życia na planetach pozasłonecznych. Planety są zmieniane i modelowane przez promieniowanie ich gwiazd macierzystych. Takie właśnie zmiany umożliwiły powstanie życia na Ziemi, wyjaśnia Batalha.
      WASP-39b znajduje się aż ośmiokrotnie bliżej swojej gwiazdy niż Merkury Słońca. To zaś okazja do zbadania wpływu gwiazd na egzoplanety i lepszego zrozumienia związków pomiędzy gwiazdą a planetą. Specjaliści będą mogli dzięki temu lepiej pojąć zróżnicowanie planet we wszechświecie.
      Poza dwutlenkiem siarki Webb wykrył też obecność sodu, potasu, pary wodnej, dwutlenku węgla oraz tlenku węgla. Nie zarejestrował natomiast oczywistych śladów obecności metanu i siarkowodoru. Jeśli gazy te są obecne w atmosferze, to jest ich niewiele.
      Astrofizyk Hannah Wakeford z University of Bristol w Wielkiej Brytanii, która specjalizuje się w badaniu atmosfer egzoplanet jest zachwycona danymi z Webba. Przewidywaliśmy, co może nam pokazać, ale to, co otrzymaliśmy, jest bardziej precyzyjne, zróżnicowane i piękne niż sądziliśmy, stwierdza.
      Teleskop dostarczył tak szczegółowych informacji, że specjaliści mogą też określać wzajemne stosunki pierwiastków, np. węgla do tlenu czy potasu do tlenu. Tego typu informacje pozwalają zrekonstruować sposób tworzenia się planety z dysku protoplanetarnego otaczającego jej gwiazdę macierzystą.
      Skład atmosfery WASP-39b wskazuje, że w procesie powstawania dochodziło do licznych zderzeń i połączeń z planetozymalami, czyli zalążkami planet. Obfitość siarki w stosunku do tlenu wskazuje prawdopodobnie, że doszło do znaczącej akrecji planetozymali. Dane pokazują też, że tlen występuje w znacznie większej obfitości niż węgiel, a to potencjalnie oznacza, że WASP-39b uformowała się z daleka od gwiazdy, mówi Kazumasa Ohno z UC Santa Cruz.
      Dzięki Webbowi będziemy mogli dokładnie przyjrzeć się atmosferom egzoplanet. To niezwykle ekscytujące, bo całkowicie zmieni naszą wiedzę. I to jedna z najlepszych stron bycia naukowcem, dodaje Laura Flagg z Cornell University.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już za tydzień, 26 września, przez całą noc będziemy mogli cieszyć się wyjątkowym widokiem Jowisza. Planeta znajdzie się w wielkiej opozycji, a to oznacza, że będzie doskonale widoczna. Wystarczy dobra lornetka by zaobserwować charakterystyczne barwne pasy planety i trzy z czterech księżyców galileuszowych. To największe księżyce Jowisza, które Galileusz odkrył w 1610 roku.
      Opozycja ma miejsce, gdy dwa ciała oglądane z Ziemi znajdują się naprzeciwko siebie. Najczęściej mówimy tutaj o opozycji obserwowanego ciała do Słońca. Opozycja Jowisza, a zatem sytuacja gdy Słońce i Jowisz znajdują się po przeciwnych sobie stronach Ziemi, zachodzi co 13 miesięcy. Jowisz wydaje się wówczas jaśniejszy i większy. Tym razem jednak opozycja będzie wyjątkowa, gdyż jednocześnie Jowisz będzie w peryhelium, czyli najbliższym Słońcu punkcie swojej orbity. Będziemy więc mieli do czynienia z wielką opozycją, zwaną też wielkim zbliżeniem, które ma miejsce co kilkanaście lat. Tym razem jednak Jowisz podczas opozycji znajdzie się najbliżej Ziemi od 70 lat.
      Opozycja Jowisza rzadko zbiega się z jego peryhelium. Dlatego warto poświęcić część nocy na obserwacje. Jowisz będzie jednym z najjaśniejszych – a może nawet najjaśniejszym – obiektem na nocnym niebie. Zaraz po Księżycu, rzecz jasna.
      Na kolejne wielkie zbliżenie Jowisza trzeba będzie poczekać do 2 października 2034 roku. Jednak wówczas planeta będzie o 700 000 kilometrów dalej od Ziemi niż przy obecnym wielkim zbliżeniu.
      Jowisz bardzo interesuje naukowców. Obecnie planeta jest badana przez misję Juno. Została ona wystrzelona w 2011 roku i dotarła do planety w roku 2016. Początkowo planowano, że cała misja potrwa 7 lat. Juno pracuje już 11 lat a niedawno NASA przedłużyła jej misję do roku 2025. Na rok 2024 zaplanowano wystrzelenie misji Europa, która ma badać jeden z księżyców galileuszowych – Europę.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od niemal 1,5 roku na powierzchni Marsa pracuje MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), które wytwarza tlen z marsjańskiej atmosfery. Urządzenie, znajdujące się na pokładzie łazika Perseverance, trafiło na Czerwoną Planetę w lutym 2021, a pierwszy tlen wytworzyło 20 kwietnia.
      Naukowcy z MIT i NASA informują, że do końca 2021 roku MOXIE uruchamiano siedmiokrotnie, podczas różnych pór roku, w różnych warunkach atmosferycznych, zarówno w ciągu dnia jak i nocy. Za każdym razem eksperymentalny instrument osiągał swój cel i produkował 6 gramów tlenu na godzinę. To mniej więcej tyle co średniej wielkości drzewo na Ziemi.
      Badacze przewidują, że zanim na Marsie wyląduje pierwszy człowiek, zostanie tam wysłana większa wersja MOXIE, zdolna do produkcji kilkunastu lub kilkudziesięciu kilogramów tlenu na godzinę. Takie urządzenie zapewniałoby nie tylko tlen do oddychania, ale również tlen potrzebny do wyprodukowania paliwa, dzięki któremu astronauci mogliby wrócić na Ziemię. MOXIE to pierwszy krok w kierunku realizacji tych zamierzeń.
      MOXIE to jednocześnie pierwsze urządzenie na Marsie, które wykorzystuje lokalne surowce – w tym przypadku dwutlenek węgla – do produkcji potrzebnych nam zasobów. To pierwsza w historii praktyczna demonstracja wykorzystania zasobów z innej planety i przekształcenia ich w coś, co można wykorzystać podczas misji załogowej, mówi profesor Jeffrey Hoffman z Wydziału Aeronautyki i Astronautyki MIT. Nauczyliśmy się bardzo wielu rzeczy, dzięki którym będziemy mogli przygotować większy system tego typu, dodaje Michael Hecht z Haystack Observatory na MIT, główny badacz misji MOXIE.
      Obecna wersja MOXIE jest niewielka. Urządzenie ma się zmieścić na pokładzie łazika. Ponadto zaprojektowano je z myślą o działaniu przez krótki czas. Prowadzenie eksperymentów z użyciem MOXIE zależy od innych badań prowadzonych przez łazik. Docelowa pełnowymiarowa wersja urządzenia miałaby pracować bez przerwy.
      MOXIE najpierw pobiera gaz z atmosfery Marsa. Przechodzi on przez filtr usuwający zanieczyszczenia. Gaz jest następnie kompresowany i przesyłany do instrumentu SOXE (Solid OXide Electrolyzer), który elektrochemicznie rozbija CO2 na jony tlenu i tlenek węgla. Jony są następnie izolowane i łączone, by uzyskać tlen molekularny O2. Jest ona następnie badany pod kątem ilości i czystości, a później uwalniany wraz z innymi gazami do atmosfery Marsa.
      Po uruchomieniu MOXIE najpierw przez kilka godzin się rozgrzewa, później przez godzinę produkuje tlen, a następnie kończy pracę. Każdy z siedmiu eksperymentów zaplanowano tak, by odbywał się w różnych warunkach. Naukowcy chcieli sprawdzić, czy urządzenie poradzi sobie z takim wyzwaniem. Atmosfera Marsa jest znacznie bardziej zmienna niż atmosfera Ziemi. Jej gęstość w ciągu roku może zmieniać się o 100%, a zmiany temperatury dochodzą do 100 stopni Celsjusza. Jednym z celów naszych eksperymentów było sprawdzenie, czy MOXIE będzie działało o każdej porze roku, wyjaśnia Hoffman. Dotychczas urządzenie produkowało tlen niemal o każdej porze dnia i nocy. Nie sprawdzaliśmy jeszcze, czy może pracować o świcie lub zmierzchu, gdy dochodzi do znacznych zmian temperatury. Ale mamy asa w rękawie. Testowaliśmy MOXIE w laboratorium i sądzę, że będziemy w stanie udowodnić, iż rzeczywiście radzi sobie o każdej porze doby, zapowiada Michael Hecht.
      Na tym jednak ambitne plany się nie kończą. Inżynierowie planują przeprowadzenie testów marsjańską wiosną, gdy gęstość atmosfery i poziom CO2 są najwyższe. Uruchomimy MOXIE przy największej gęstości atmosfery i spróbujemy pozyskać najwięcej tlenu jak to tylko będzie możliwe. Ustawimy najwyższą moc na jaką się odważymy i pozwolimy urządzeniu pracować tak długo, jak będziemy mogli, dodaje menedżer.
      MOXIE jest jednym z wielu eksperymentów na pokładzie Perseverance, nie może więc pracować bez przerwy, energia potrzebna jest też do zasilania innych urządzeń. Dlatego tez instrument jest uruchamiany i zatrzymywany, to zaś prowadzi do dużych zmian temperatury, które z czasem mogą niekorzystnie wpływać na urządzenie. Dlatego też inżynierowie analizują prace MOXIE pod kątem zużycia. To bardzo potrzebne badania. Jeśli bowiem mała wersja MOXIE wytrzyma wielokrotne uruchamianie, ogrzewanie, pracę i schładzanie się, to duża wersja, działająca bez przerwy, powinna być w stanie pracować przez tysiące godzin.
      Na potrzeby misji załogowej będziemy musieli przywieźć na Marsa wiele różnych rzeczy, jak komputery, skafandry czy pomieszczenia mieszkalne. Po co więc brać jeszcze ze sobą tlen, skoro można go wytworzyć na miejscu, mówi Hoffman.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...