Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Kolejna planeta wokół gwiazdy najbliższej Słońcu
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Darwin był pierwszym naukowcem, który zwrócił uwagę na ruchy nutacyjne roślin. Od tamtej pory badający je uczeni dowiedzieli się, że te zwykle koliste lub wahadłowe ruchy służą, między innymi, poszukiwaniu podpory przez pędy. Jednak ruchy nutacyjne wykonuje też podążający za słońcem słonecznik. I, jak wszyscy wiemy, chodzi tutaj o zwrócenie się w stronę źródła światła. Jednak, jak dowodzą naukowcy z Izraela i USA, nie jest to działanie wyłącznie samolubne. Okazuje się bowiem, że gęsto rosnące słoneczniki poruszają się tak, by rzucać jak najmniej cienia na sąsiadujące rośliny.
Już wcześniejsze badania pokazały, że jeśli słoneczniki są gęsto zasiane, ich wzorzec wzrostu przypomina zygzak. Jedna rośilna jest wychylona do przodu, sąsiednia do tyłu. W ten sposób cała społeczność maksymalizuje dostęp do światła słonecznego. Co więcej, potrafią odróżnić cień rzucany na przykład przez budynek, od cienia innych roślin. Jeśli wyczują cień budynku, nie zmieniają kierunku wzrostu, bo wiedzą, że to nic nie da. Jeśli jednak wyczują cień innej rośliny, rosną tak, by od tego cienia się oddalić, bo i ta roślina będzie się oddalała, wyjaśnia główna autorka badań, profesor Yasmine Meroz z Uniwersytetu w Tel Awiwie.
Autorzy badań prowadzili eksperyment, w czasie którego co kilka minut fotografowali gęsto zasiane słoneczniki. Mogli w ten sposób śledzić ruchy każdej z roślin. Przeanalizowaliśmy ruch każdej z roślin w grupie, obserwowaliśmy ich taniec podczas wzrostu i przekonaliśmy się, że każda roślina stara się rosnąć tak, by nie blokować światła swojemu sąsiadowi. Zaskoczeniem dla nas był olbrzymi zakres ruchów, sięgający trzech rzędów wielkości. W zależności od sytuacji rośliny albo niemal nie zmieniały swojej pozycji, albo przesuwały się nawet o 2 centymetry co kilka minut w różnych kierunkach, dodaje uczona.
Ta duża elastyczność ruchów pozwala słonecznikom na zadbanie o sąsiada i zmaksymalizowanie jego fotosyntezy. Gdyby słoneczniki były zdolne do wykonywania tylko ruchów o dużym zakresie, lub tylko tych o małym zakresie, częściej by się przesłaniały i rzucały cień na sąsiadów. To przypomina taniec w zatłoczonym miejscu, gdzie każdy z tancerzy porusza się tak, by wokół było jak najwięcej miejsca.[...] Dynamika ruchu słoneczników to połączenie reakcji na cień innych roślin z przypadkowymi ruchami niezależnymi od zewnętrznego bodźca, stwierdza Meroz.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet.
Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol.
Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter.
Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu.
Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Indie nie ustają w podboju kosmosu. Przed 9 laty kraj zadziwił świat wprowadzając przy pierwszej próbie swojego satelitę na orbitę Marsa, a przed dwoma tygodniami umieścił na Księżycu lądownik i łazik. Teraz dowiadujemy się, że Indyjska Organizacja Badań Kosmicznych (ISRO) z powodzeniem wystrzeliła pierwszą indyjską misję w kierunku Słońca.
Misja Aditya-L1, nazwana tak od boga Słońca, zostanie umieszczona – jak wskazuje drugi człon jej nazwy – w punkcie libracyjnym L1. Znajduje się on pomiędzy Słońcem a Ziemią, w odległości około 1,5 miliona kilometrów od naszej planety. Dotrze tam na początku przyszłego roku. Dotychczas pojazd z powodzeniem wykonał dwa manewry orbitalne.
Na pokładzie misji znalazło się siedem instrumentów naukowych. Jej głównymi celami jest zbadanie korony słonecznej, wiatru słonecznego, zrozumienie procesów inicjalizacji koronalnych wyrzutów masy, rozbłysków i ich wpływów na pogodę kosmiczną w pobliżu Ziemi, zbadanie dynamiki atmosfery Słońca oraz rozkładu wiatru słonecznego i anizotropii temperatury.
Za badania korony naszej gwiazdy i dynamiki koronalnych wyrzutów masy odpowiadał będzie instrument VELC (Visible Emission Line Coronograph), z kolei SUI (Solar Ultra-violet Imaging Telescope) zobrazuje foto- i chromosferę gwiazd w bliskim ultrafiolecie i zbada zmiany irradiancji. APEX i PAPA (Aditya Solar wind Particle EXperiment i Plasma Analyser Package for Aditya) będą opowiadały za badania wiatru słonecznego, jonów i rozkładu energii, a dzięki instrumentom SoLEX i HEL1OS (Solar Low Energy X-ray Spectrometer, High Energy L1 Orbiting X-ray Spectrometer) pogłębimy naszą wiedzę o rozbłyskach w zakresie promieniowania rentgenowskiego. Ostatni z instrumentów, magnetometr, zbada pola magnetyczne w L1.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dwóch naukowców z Japonii, Patryk Sofia Lykawka i Takashi Ito, zaprezentowali wyliczenia, które mogą wskazywać, że w Pasie Kuipera znajduje się planeta wielkości Ziemi. Dziewiąta Planeta, zwana też Planetą X, jest od wielu lat przedmiotem poszukiwań. Przynajmniej od czasu, gdy w 2016 roku dwóch profesorów z Caltechu (California Institute of Technology), zaprezentowali pracę, z której wynikało, że orbity 13 odległych obiektów z Pasa Kupiera ma nietypowe podobne orbity, a można je wyjaśnić obecnością planety.
Od czasu opublikowania pracy uczonych z Caltechu odkryto kolejne obiekty, których orbity pasowałyby do hipotezy o obecności nieznanej planety, rozpoczęto jej poszukiwania w średniowiecznych tekstach, pojawiła się też hipoteza, że w Układzie Słonecznym krąży pierwotna czarna dziura, a nie nieznana planeta.
Patryk Sofia Lykawka z Uniwersytetu Kindai oraz Takashi Ito z Narodowego Obserwatorium Astronomicznego Japonii i Uniwersytetu Technologii w Chiba opublikowali w The Astronomical Journal pracę, w której opisują właściwości obiektów z Pasa Kuipera, które wskazują na obecność planety.
Wykorzystaliśmy symulację komputerową problemu wielu ciał, by zbadać wpływ hipotetycznej planety w Pasie Kuipera na strukturę orbit obiektów transneptunowych znajdujących się w odległości większej niż 50 jednostek astronomicznych. Do stworzenia naszego modelu wykorzystaliśmy dane obserwacyjne, w tym dobrej jakości dane z Outer Solar System Origins Survey. Stwierdziliśmy, że obecność podobnej do Ziemi planety (o masie od 1,5 do 3 mas Ziemi), znajdującej się na odległej (półoś wielka ok. 250–500 j.a., peryhelium ok. 200 j.a.) orbicie o nachyleniu orbity wynoszącym ok. 30 stopni może wyjaśnić trzy podstawowe właściwości odległych obiektów z Pasa Kuipera: znaczącej populacji obiektów transneptunowych o orbitach poza wpływem grawitacyjnym Neptuna, znaczącą populację obiektów o wysokim nachyleniu orbity (> 45 stopni) oraz istnienie obiektów o wyjątkowo nietypowych orbitach (np. Sedna). Ponadto obecność proponowanej planety jest zgodna ze zidentyfikowanymi długoterminowo stabilnymi obiektami transneptunowymi, pozostającymi w rezonansie 2:1, 5:2, 3:1, 4:1, 5:1 i 6:1 z Neptunem. Ta populacja stabilnych obiektów jest często pomijana w innych badaniach, czytamy w artykule.
Pas Kuipera znajduje się za orbitą Neptuna, w odległości 30–50 jednostek astronomicznych od Ziemi. Zawiera on wiele małych obiektów. To właśnie w nim znajduje się Pluton. Mianem obiektów transneptunowych określa się okrążające Słońce planetoidy znajdujące się poza orbitą Neptuna.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli brązowego karła, którego powierzchnia jest znacznie bardziej gorąca niż powierzchnia Słońca. Tymczasem brązowe karły nie są gwiazdami. To obiekty gwiazdopodobne, których masa jest zbyt mała, by mógł w nich zachodzić proces przemiany wodoru w hel. Mają masę co najmniej 13 razy większą od Jowisza. Od olbrzymich planet różnie je to, że są zdolne do fuzji deuteru. Po jakimś czasie proces ten zatrzymuje się. Najgorętsze i najmłodsze brązowe karły osiągają temperaturę ok. 2500 stopni Celsjusza. Później stygną. Temperatura najstarszych i najmniejszych z nich to około -26 stopni.
W najnowszym numerze Nature Astronomy naukowcy opisali brązowego karła, którego temperatura powierzchni sięga 7700 stopni Celsjusza. To znacznie więcej, niż 5500 stopni, jaką ma temperatura Słońca. Nic więc dziwnego, że gdy na początku XXI wieku po raz pierwszy zauważono ten obiekt, omyłkowo go sklasyfikowano. Dopiero powtórna analiza danych przeprowadzona przez Na'amę Hallakoun z izraelskiego Instytutu Naukowego Weizmanna i jej zespół pokazały, z czym mamy do czynienia.
Nasz brązowy karzeł ma tan olbrzymią temperaturę, gdyż obiega po bardzo ciasnej orbicie białego karła WD 0032-317. To właśnie jego promieniowanie ogrzewa brązowego karła do tak olbrzymich temperatur. Brązowy karzeł znajduje się w obrocie sychronicznym wokół WD 0032-317, co oznacza, że jest cały czas zwrócony w jej kierunku tylko jedną stroną. To zaś powoduje olbrzymie różnice temperatur. Strona nocna brązowego karła jest aż o 6000 stopni Celsjusza chłodniejsza niż strona dzienna.
Gdy układ ten po raz pierwszy zaobserwowano przed dwoma dziesięcioleciami, sądzono, że jest to układ podwójny dwóch białych karłów. Jednak gdy Hallakoun i jej zespół przyjrzeli się danym, zauważyli coś, co kazało im ponownie przyjrzeć się temu układowi. Mogli obserwować go rejestrując linie emisji pochodzące z dziennej strony brązowego karła. Dane były tak zaskakujące, że początkowo naukowcy sądzili, że nieprawidłowo je opracowali. Później zauważyli, że tak naprawdę obserwują układ składający się z białego karła, wokół którego krąży brązowy karzeł. Uczeni, którzy przed 20 laty zaobserwowali ten system, nie zauważyli tego, gdyż obserwowali nocną stronę brązowego karła.
Autorzy odkrycia mówią, że przyda się ono do badania ultragorących Jowiszów, czyli olbrzymich planet krążących blisko swojej gwiazdy. Znalezienie takich planet nastręcza na tyle dużo trudności, że obecnie znamy pojedyncze planety tego typu. Dlatego też astronomowie nie od dzisiaj myślą o wykorzystaniu brązowych karłów krążących blisko gwiazd w roli modelu do badań ultragorących Jowiszów. Brązowe karły łatwiej jest obserwować.
Układ WD 0032-317 rzuci też światło na ewolucję gwiazd. Na podstawie obecnie obowiązujących modeli naukowcy stwierdzili, że brązowy karzeł ma kilka miliardów lat. Z kolei niezwykle wysoka temperatura białego karła WD 0032-317 wskazuje, że istnieje on zaledwie od około miliona lat. Co więcej, ma on masę zaledwie 0,4 mas Słońca. Zgodnie z obowiązującymi teoriami, biały karzeł o tak małej masie nie może istnieć. Ewolucja gwiazdy do takiego stanu musiałaby bowiem trwać dłużej, niż istnieje wszechświat.
Dlatego naukowcy sądzą, że brązowy karzeł przyspieszył ewolucję towarzyszącej mu gwiazdy. Hallakoun i jej zespół uważają, że przez pewien czas oba obiekty znajdowały się we wspólnej otoczce gazowej. Pojawiła się ona, gdy gwiazda macierzysta zmieniła się w czerwonego olbrzyma i pochłonęła brązowego karła. Z czasem wspólna otoczka została usunięta, w czym swój udział miał brązowy karzeł, co doprowadziło do szybszego pojawienia się białego karła.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.