-
Similar Content
-
By KopalniaWiedzy.pl
Szanghajskie Obserwatorium Astronomiczne zaproponowało umieszczenie w przestrzeni kosmicznej teleskopu, którego zadaniem byłoby poszukiwanie egzoplanet. Jeśli propozycja zostanie zaakceptowana – a decyzja ma zapaść latem bieżącego roku – Chiny rozpoczną budowę swojego pierwszego teleskopu kosmicznego wykrywającego egzoplanety.
Zgodnie z propozycją Earth 2.0 Telescope miałby zostać umieszczony w punkcie libracyjnym L2 – tym samym w którym znajduje się Teleskop Webba – gdzie miałby spędzić cztery lata. Uczeni z Szanghaju chcą, by Earth 2.0 obserwował część kosmosu w kierunku centrum Drogi Mlecznej poszukując tam tranzytu planet na tle ich gwiazd macierzystych. Głównym celem zainteresowania teleskopu miałyby być egzoplanety wielkości Ziemi, krążące wokół gwiazd podobnych do Słońca po orbicie podobnej do orbity Ziemi. To oznacza, że teleskop musi być bardzo czuły oraz zdolny do długotrwałej obserwacji tych samych gwiazd, by odnotować tranzyty mające miejsce raz na kilkanaście miesięcy.
Ge Jian, profesor z Szanghaju mówi, że Earth 2.0 nie byłby w stanie samodzielnie rozpoznawać planet bliźniaczych Ziemi. Zadaniem urządzenia byłoby odnalezienie planety, określenie jej wielkości i czasu obiegu wokół gwiazdy. Dane te byłyby następnie wykorzystywane podczas kolejnych obserwacji za pomocą innych urządzeń. I dopiero te obserwacje powiedziałyby nam, czy Earth 2.0 Telescope znalazł planetę podobną do naszej, która znajduje się w ekosferze swojej gwiazdy. Tacy kandydaci na planety byliby obserwowani za pomocą teleskopów naziemnych, dzięki którym określilibyśmy ich masę oraz gęstość. Następnie niektóre z nich można by dalej śledzić za pomocą naziemnych i kosmicznych spektroskopów w celu określenia widma światła pochodzącego z planety, co pozwoli na zbadanie składu ich atmosfery, mówi uczony.
Chiński teleskop skupiłby się na tym samym obszarze, który badał słynny Teleskop Keplera. jednak miałby znacznie większe pole widzenia, zatem mógłby obserwować większy obszar i więcej gwiazd.
Pole widzenia Keplera wynosi 115 stopni kwadratowych. Teleskop obserwował ponad pół miliona gwiazd, odkrył około 2600 egzoplanet, a drugie tyle czeka na potwierdzenie. Earth 2.0. Telescope miałby mieć 500-stopniowe pole widzenia. Warto nadmienić, że cały nieboskłon to około 41 000 stopni kwadratowych. Chiński teleskop byłby zdolny do monitorowania 1,2 miliona gwiazd. Mógłby też obserwować bardziej odległych i mniej jasnych gwiazd niż Teleskop Keplera.
Profesor Ge mówi, że z obliczeń jego zespołu wynika, iż taki teleskop mógłby odkryć około 30 000 nowych planet, z czego około 5000 byłoby podobnych do Ziemi.
Zgodnie z projektem Earth 2.0 Telescope składałby się z 6 teleskopów poszukujących planet podobnych do Ziemi i 1 szukającego zimnych lub swobodnych planet wielkości Marsa.
Decyzja odnośnie ewentualnego sfinansowania projektu ma zapaść w czerwcu. Jeśli zostanie wydana zgoda na przeprowadzenie misji, Earth 2.0 Telescope mógłby zostać wystrzelony już w 2026 roku.
« powrót do artykułu -
By KopalniaWiedzy.pl
Astronomowie po raz pierwszy zaobserwowali gwiazdę, która weszła w okres niezwykle niskiej aktywności, podobnej do Minimum Maundera, którego Słońce doświadczyło w drugiej połowie XVII wieku. Odkrycia dokonał zespół Anny Baum z Penn State University i Lehigh University, który przyjrzał się historycznym danym z obserwacji 59 gwiazd podobnych do Słońca. Naukowcy szukali oznak aktywności magnetycznej gwiazd.
W czasie badań uczeni obserwowali linie absoprcyjne zjonizowanego wapnia. Szczególnie interesowały ich linie spektralne H i K, które są wrażliwe na siłę pola magnetycznego. Przy ich badaniu używa się wartości S, określającej aktywność magnetyczną gwiazdy. Im większy współczynnik S, tym bardziej aktywna gwiazda.
Aktywność Słońca charakteryzują 11-letnie cykle. Wśród obserwowanych gwiazd cykle zauważono w przypadku 29 z nich, a w przypadku 14 udało się zmierzyć czas trwania cykli. Średni czas trwania cyklu wśród tych 14 gwiazd wynosił nieco poniżej 10 lat, co jest wartością podobną do 11-letniego cyklu słonecznego, mówi Baum. Uczona zauważa przy tym, że cykl jednej z gwiazd miał 4 lata długości, a w przypadku gwiazdy HD 166620 wynosił on aż 17 lat. Wynosił, gdyż gdzieś pomiędzy rokiem 1995 a 2004 cykl HD 166620 się zatrzymał.
Naukowcy nie są pewni, kiedy do tego doszło, gdyż zjawisko to nastąpiło w czasie, gdy zmieniano instrumenty na jednym z teleskopów. Zespół Baum korzystał bowiem z danych Mount Wilson Observatory HK Project z lat 1966–1995, a później z danych projektu California Planet Search. W roku 2004 ten drugi projekt zyskał nowy udoskonalony spektrometr i wówczas stało się oczywiste, że HD 166620 stała się w międzyczasie wyjątkowo mało aktywna. Od ponad 10 lat aktywność tej gwiazdy utrzymuje się na bardzo niskim poziomie. Z niecierpliwością czekamy na moment, w którym jej aktywność znowu zacznie rosnąć, mówi Baum.
To oczekiwanie może potrwać bardzo długo. Słoneczne Minimum Maundera trwało od roku 1645 do 1715, a w tym aktywność naszej gwiazdy była naprawdę niewielka. Dość wspomnieć, że w latach 1672–1699 zanotowano mniej niż 50 plam słonecznych, podczas gdy nawet podczas minimum 11-cyklu obserwuje się ich kilkanaście w ciągu roku, a podczas maksimum mamy do czynienia z ponad 100 plamami rocznie.
Nie wiadomo dokładnie, co powoduje zjawiska podobne do Minimum Maundera. Przed kilku laty ukazała się praca naukowa, której autorzy dowodzili, że ma to związek z ruchem obrotowym gwiazdy. Dlatego też tak ważne jest zbadanie HD 166620 i odnotowanie momentu jej powrotu do normalnej aktywności.
Wśród innych obserwowanych przez Baum gwiazd zauważono kilka interesujących zjawisk. Na przykład HD 101501 była nieaktywna magnetycznie w latach 1980–1990, a aktywność HD 4916 stopniowo spada, ale nie doszła do minimalnego poziomu. O ile mi wiadomo, HD 166620 jest pierwszą zaobserwowaną gwiazdą, która w oczywisty sposób weszła w okres minimalnej aktywności.
« powrót do artykułu -
By KopalniaWiedzy.pl
Teleskop Hubble'a sfotografował protoplanetę podobną do Jowisza, która formuje się w wyniku „intensywnego i gwałtownego” procesu. Obserwacje Hubble'a wspierają mniej popularną z hipotez o tworzeniu się planet, tę mówiącą o niestabilności dysku protoplanetarnego.
Nowo tworząca się planeta krąży wokół gwiazdy, której wiek astronomowie szacują na zaledwie 2 miliony lat. Dla przypomnienia, Układ Słoneczny liczy sobie około 4,6 miliarda lat.
Wszystkie planety powstają z dysków protoplanetarnych, dysków materiału krążącego wokół gwiazd. Dominująca hipoteza dotycząca formowania się gazowych olbrzymów jak Jowisz mówi, że powstają one w wyniku stopniowego zlepiania się materiału krążącego w dysku protoplanetarnym. Materiał, od miniaturowych ziaren pyłu po wielkie bloki skalne, zderza się i zlepia. Z czasem powstaje jądro, wokół którego gromadzi się gaz z dysku. Zgodnie zaś z alternatywną, mniej popularną, hipotezą, gdy dysk protoplanetarny się ochładza, grawitacja powoduje jego gwałtowne rozpadnięcie się na fragmenty o masie planet.
Nowo odkryta planeta, AB Aurigae b, jest około 9-kronie bardziej masywna od Jowisza i krąży wokół gwiazdy w odległości dwukrotnie większej niż odległość między Plutonem a Słońcem. Przy tak wielkiej odległości uformowanie się planety ze zderzającego się i zlepiającego materiału musiałoby trwać niezwykle długo. O ile w ogóle by do tego doszło. Dlatego też naukowcy sądzą, AB Aurigae b powstaje w wyniku niestabilności dysku. Mamy więc tutaj do czynienia z potwierdzeniem mniej popularnego modelu tworzenia się planet.
Powyższe badania zostały wykonane za pomocą dwóch instrumentów znajdujących się na pokładzie Teleskopu Hubble'a, a uzyskane wyniki porównano z danymi z japońskiego Subaru Telescope na Mauna Kea na Hawajach. Zinterpretowanie zjawisk zachodzących w tym układzie jest niezwykle trudne. Dlatego między innymi potrzebowaliśmy Hubble'a. Dobrej jakości zdjęcie pozwala nam lepiej odróżnić światło z dysku i z planety, mówi główny autor badań, Thayne Currie. Uczony dodaje, że przejrzano archiwa zdjęć Hubble'a i znaleziono w nich liczne zdjęcia AB Aurigae b wykonane w różnych długościach fali. Tworzą one spójny obraz, dostarczając silnych dowodów.
Nowe odkrycie to silny dowód na poparcie hipotezy mówiącej, że niektóre gazowe olbrzymy powstają w wyniku niestabilności dysku. Tak naprawdę to grawitacja jest tym, co się ostatecznie liczy, a pozostałości po formowaniu się gwiazd w ten czy inny sposób – za pośrednictwem grawitacji – łączą się, tworząc planety, mówi Alan Boss z Carnegie Institution of Science w Waszyngtonie.
« powrót do artykułu -
By KopalniaWiedzy.pl
Jacques Kluska i jego zespół z Katolickiego Uniwersytetu w Leuven (KU Leuven) znaleźli dowody wskazujące, że stare gwiazdy w układach podwójnych mogą tworzyć planety. Podczas prowadzonych w podczerwieni obserwacji naukowcy zauważyli 10 systemów, w których w dyskach protoplanetarnych prawdopodobnie uformowały się wielkie planety. Jeśli odkrycie się potwierdzi, będziemy musieli ponownie przemyśleć teorie dotyczące narodzin planet.
Dyski protoplanetarne do olbrzymie struktury z gazu i pyłu otaczające rodzące się gwiazdy. Dzięki ich obserwacjom wiemy, w jaki sposób powstają planety. Wszystko rozpoczyna się od stopniowego łącznia się materii w dyskach. Z czasem zlepia się jej coraz więcej, powstaje coraz większy obiekt, który dosłownie rzeźbi w dysku. Z czasem rodzi się planeta, a tam, gdzie krąży wokół gwiazdy, widać wyraźnie mniej materiału w dysku protoplanetarnym. Ten brakujący materiał utworzył planetę. Obserwując więc dyski protoplanetarne z takimi wyraźnymi przerwami w materiale, możemy odnajdować tworzące się wokół nich planety. Z obserwacji dysków protoplanetarnych wokół młodych gwiazd wiemy, że emisja w podczerwieni z tych dysków spada w miarę formowania się w nich planet.
Jednak dyski protoplanetarne istnieją nie tylko wokół młodych gwiazd. Zaobserwowano je też wokół starych układów podwójnych, w skład których wchodzi biały karzeł. To pozostałość gwiazdy, która odrzuciła swoje zewnętrzne warstwy. I to właśnie te warstwy tworzą „dysk protoplanetarny drugiej generacji” wokół takich systemów.
Kluska i jego zespół obserwowali emisję z 85 starych układów podwójnych w Drodze Mlecznej. Zauważyli, że w przypadku 10 z nich emisja w podczerwieni była niższa niż powinna. To zaś sugeruje, że mogą się tam tworzyć planety. To jednak nie wszystkie wskazówki. Okazało się bowiem, że na powierzchni białych karłów w tych systemach występuje mniejszy odsetek metali trudnotopliwych – m.in. niobu, molibdenu, wolframu, tantalu i renu – niż zwykle. To wskazuje, że metale te mogły wejść w skład tworzącej się planety, zamiast opaść na powierzchnię gwiazdy.
Belgijscy uczeni chcą teraz wykorzystać teleskopy Europejskiego Obserwatorium Południowego, za pomocą których spróbują dojrzeć ewentualne planety tworzące się w dyskach protoplanetarnych starych układów podwójnych. Jeśli im się to uda, będą mogli badać tworzenie się „planet drugiej generacji”.
« powrót do artykułu -
By KopalniaWiedzy.pl
Przed siedmioma miesiącami, 28 kwietnia 2021 o godzinie 9:33 czasu polskiego, Parker Solar Probe stał się pierwszym pojazdem, który dotarł do korony Słońca. Pozostał w niej przez 5 godzin. To pierwszy wysłane przez człowieka urządzenie, które osiągnęło zewnętrzne granice naszej gwiazdy. Wyniki przeprowadzonych wówczas badań zostały właśnie opublikowane na łamach Physical Review Letters. Misja PSP osiągnęła swój główny cel i rozpoczęła nową epokę w rozumieniu fizyki korony Słońca, mówi profesor Justin C. Kasper w University of Michigan, główny autor artykułu.
Zewnętrzna krawędź Słońca jest wyznaczana przez powierzchnię krytyczną Alfvéna, miejscem poniżej którego Słońce i jego siły grawitacyjne i magnetyczne bezpośrednio kontrolują wiatr słoneczny. W 2018 roku NASA wystrzeliła Parker Solar Probę, której celem było osiągnięcie korony naszej gwiazdy. W kwietniu bieżącego roku PSP spędziła 5 godzin poniżej powierzchni krytycznej Alfvéna, w obszarze, gdzie ciśnienie i energia pola magnetycznego gwiazdy są silniejsze niż ciśnienie i energia cząstek przezeń emitowanych. Tym samym PSP stała się pierwszym pojazdem kosmicznym, który dotknął atmosfery naszej gwiazdy.
Ku zdumieniu naukowców okazało się, że powierzchnia krytyczna Alfvéna jest pofałdowana. Dane sugerują, że największe z tych fałd to skutek oddziaływania tzw. pseudostreamera. O ile streamery to długotrwale istniejące struktury oddzielające od siebie regiony magnetyczne o przeciwnej polaryzacji w koronie słonecznego, to pseudostreamery są przejściowymi strukturami oddzielającymi regiony magnetyczne o tej samej polaryzacji. Obecnie nie jest jasne, dlaczego pseudostreamery miałyby wypychać powierzchnię krytyczną Alfvéna.
Zauważono również, że poniżej powierzchni krytycznej tworzy się znacznie mniej fal Alfvéna niż powyżej tego punktu. Może to świadczyć, że nie powstają one w koronie. PSP zarejestrował też pewne dowody wskazujące na istnienie nieznanego mechanizmu fizycznego powodującego zwiększenie produkcji energii w koronie.
Od dziesięcioleci obserwujemy Słońce i jego koronę. Wiemy, że zachodzą tam interesujące zjawiska fizyczne związane z ogrzewaniem i przyspieszaniem plazmy. Jednak nie znamy dokładnie tych procesów. Dzięki Parker Solar Probe wlatującemu w koronę zyskaliśmy długo oczekiwany wgląd w wewnętrzne procesy zachodzące w tym regionie, mówi Nour E. Raouafi, jeden z naukowców pracujących przy projekcie.
Parker Solar Probe to urządzenie rozmiarów małego samochodu. Jego celem jest atmosfera Słońca znajdująca się w odległości około 6,5 miliona kilometrów od powierzchni naszej gwiazdy. Głównym celem misji jest zbadanie, w jaki sposób w koronie Słońca przemieszcza się energia i ciepło oraz odpowiedź na pytanie, co przyspiesza wiatr słoneczny. Naukowcy wiążą z misją olbrzymie nadzieje, licząc, że zrewolucjonizuje ona rozumienie Słońca, Układu Słonecznego i Ziemi.
Pojazd będzie musiał przetrwać temperatury dochodząc do 1370 stopni Celsjusza. Pomoże mu w tym gruba na 11,5 centymetra osłona termiczna (Thermal Protection System) z kompozytu węglowego. Jej celem jest ochrona czterech instrumentów naukowych, które będą badały pola magnetyczne, plazmę, wysokoenergetyczne cząstki oraz obrazowały wiatr słoneczny. Instrumenty mają pracować w temperaturze pokojowej. TPS składa się z dwóch paneli węglowego kompozytu, pomiędzy którymi umieszczono 11,5 centymetra węglowej pianki. Ta strona osłony, która będzie zwrócona w kierunku Słońca została pokryta specjalną białą warstwą odbijającą promieniowanie cieplne.
Osłona o średnicy 2,5 metra waży zaledwie 72,5 kilograma. Musiała być ona lekka, by poruszająca się z olbrzymią prędkością sonda mogła wejść na odpowiednią orbitę wokół naszej gwiazdy
Co interesujące, Parker Solar Probe jest pierwszym pojazdem kosmicznym NASA nazwanym na cześć żyjącej osoby. W ten sposób uhonorowano profesora astrofizyki Eugene'a Parkera z University of Chicago. Zwykle misje NASA zyskują nową, oficjalną nazwę, po starcie i certyfikacji. Tym razem jest inaczej. W uznaniu zasług profesora Parkera na polu fizyki Słońca oraz dla podkreślenia, jak bardzo misja jest związana z prowadzonymi przez niego badaniami, zdecydowano, że oficjalna nazwa zostanie nadana przed startem.
Aby nie ulec potężnej grawitacji Słońca, które stanowi przecież 99,8% masy Układu Słonecznego, PSP musi osiągnąć prędkość nie mniejszą niż 85 000 km/h. Nie jest to łatwe zadanie, dlatego też pojazd aż siedmiokrotnie skorzysta z asysty grawitacyjnej Wenus. W końcu znajdzie się w rekordowo małej odległości 6 milionów kilometrów od powierzchni naszej gwiazdy. Stanie się też najszybszym pojazdem w historii ludzkości. Jej prędkość wyniesie niemal 700 000 km/h.
Dotychczas sonda pięciokrotnie skorzystała z asysty grawitacyjnej Wenus. Ostatni, 5. przelot, miał miejsce 16 października. W przyszłym roku PSP zbliży się do Słońca 4-krotnie. Kolejne spotkanie z Wenus zaplanowano na 21 sierpnia 2023 roku. Następnie 5-krotnie pojazd spotka się ze Słońcem. W końcu, po ostatniej asyście, która będzie miała miejsce 6 listopada 2024, PSP kilkukrotnie przeleci w odległości około 6 milionów kilometrów od powierzchni naszej gwiazdy. Ostatni raz minimalną odległość osiągnie 12 grudnia 2025.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.