Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Stare gwiazdy podwójne mogą dawać początek nowym planetom
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Przed tygodniem misja BepiColombo przeleciała w odległości zaledwie 295 kilometrów nad powierzchnią Merkurego. O godzinie 7:07 pojazd znalazł się bezpośrednio nad północnym biegunem planety, który właśnie był oświetlony przez Słońce. Była to szósta i ostatnia asysta grawitacyjna, dzięki której pod koniec przyszłego roku pojazd trafi na orbitę Merkurego. Europejska Agencja Kosmiczna (ESA), która wraz z Japońską Agencją Kosmiczną (JAXA) zorganizowała misję, pokazała zdjęcia wykonane podczas przelotu. Trzeba przyznać, że fotografie nie zawiodły oczekiwań.
Wspomniany przelot był ostatnią okazją do wykonania zdjęć przez M-CAMs (monitoring cameras). Moduł Mercury Transfer Module, do którego zamontowane są trzy 1-megapikselowe aparaty, oddzieli się od dwóch orbiterów – Mercury Planetary Orbiter (MPO - ESA) i Mercury Magnetospheric Orbiter (Mio - JAXA) – i zostanie porzucony w przestrzeni kosmicznej. MPO i MMO trafią zaś na orbitę planety.
Podczas niedawnego przelotu aparat M-CAM 1 wykonał pierwsze ujęcia powierzchni Merkurego. Mijając terminator – linię między dzienną a nocną stroną planety – miał unikatową możliwość zajrzenia do wiecznie zacienionych kraterów. Krawędzie kraterów Prokofjew, Kandinski, Tolkien i Gordimer rzucają wieczny cień na ich dno. To zaś czyni te kratery jednymi z najchłodniejszych miejsc w Układzie Słonecznym. I dzieje się tak pomimo tego, że Merkury jest planetą najbliższą Słońca.
Mamy przesłanki, by przypuszczać, że na dnie tych kraterów znajduje się woda. Czy rzeczywiście ona tam jest? To jedno z najważniejszych pytań, na jakie ma odpowiedzieć misja BepiColombo.
Na lewo od bieguna północnego M-CAM 1 sfotografował rozległe równiny wulkaniczne zwane Borealis Planitia. Te największe równiny najmniejszej planety Układu Słonecznego powstały 3,7 miliarda lat temu podczas masowego wypływu lawy. Zalała ona wcześniej istniejące kratery, jak Henri i Lismer. Widoczne na zdjęciach zmarszczki lawy utworzyły się w ciągu miliardów lat po ostygnięciu lawy, prawdopodobnie w wyniku kurczenia się samej planety, której wnętrze powoli stygło.
Kolejne zdjęcie zostało wykonane przez M-CAM 1 kilka minut po pierwszym. Widać na nim na przykład krater Mendelssohn. Jego krawędzie są ledwie widoczne nad zalanym przez lawę wnętrzem. Podobnie zresztą jest w przypadku krateru Rustaweli.
Na zdjęciach widzimy też basen Caloris. To największy krater uderzeniowy Merkurego o średnicy ponad 1500 kilometrów. Uderzenie, które go utworzyło, było tak potężne, że na powierzchni planety widać linie ciągnące się przez tysiące kilometrów od krateru. Na górze od basenu Caloris widać jaśniejszą fragment powierzchni w kształcie bumerangu. To lawa, która wydaje się łączyć powierzchnię z wnętrzem Merkurego. Wydaje się, że jej kolor jest podobny do lawy w Caloris na na Borealis Planitia. BepiColombo ma znaleźć odpowiedź na pytanie, w którą stronę ta lawa płynęła. Od czy do Caloris.
Merkury ma ciemną powierzchnię. Jasne fragmenty są młodsze od reszty. Naukowcy wciąż nie są pewni, jaki dokładnie jest skład planety, jednak jasne jest, że materiał, który wydobył się z wnętrza Merkurego na powierzchnię, ciemnieje z czasem. Na trzecim zdjęciu widzimy więc bardzo jasny obszar Nathair Facula, pozostałość po ostatniej wielkiej erupcji wulkanicznej na Merkurym. Obszar ma co najmniej 300 kilometrów średnicy. Po lewej znajduje się krater Fonteyn. Młody, powstał zaledwie 300 milionów lat temu. BepiColombo będzie badała jasne i ciemne fragmenty Merkurego i pozwoli znaleźć odpowiedź na pytanie, z czego planeta jest zbudowana i jak powstała.
Główna faza badawcza misji rozpocznie się za dwa lata, ale każdy z 6 dotychczasowych przelotów przyniósł nam niezwykle ważne informacje o tej mało zbadanej planecie, mówi główny naukowiec misji z ramienia ESA, Geraint Jones.
BepiColombo została wystrzelona 20 października 2018 roku. W jej skład wchodzą dwa orbitery, wspomniane już MPO i Mio. Za ich transport w okolice Merkurego odpowiada zaś Mercury Transfer Module. Pod koniec 2026 roku MTM oddzieli się od orbiterów, które wejdą na orbity biegunowe wokół planety. Badania naukowe rozpoczną na początku 2027 roku. Misja obu orbiterów przewidziana jest na 12 miesięcy, z możliwością przedłużenia jej o kolejny rok.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet.
Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol.
Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter.
Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu.
Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dwóch naukowców z Japonii, Patryk Sofia Lykawka i Takashi Ito, zaprezentowali wyliczenia, które mogą wskazywać, że w Pasie Kuipera znajduje się planeta wielkości Ziemi. Dziewiąta Planeta, zwana też Planetą X, jest od wielu lat przedmiotem poszukiwań. Przynajmniej od czasu, gdy w 2016 roku dwóch profesorów z Caltechu (California Institute of Technology), zaprezentowali pracę, z której wynikało, że orbity 13 odległych obiektów z Pasa Kupiera ma nietypowe podobne orbity, a można je wyjaśnić obecnością planety.
Od czasu opublikowania pracy uczonych z Caltechu odkryto kolejne obiekty, których orbity pasowałyby do hipotezy o obecności nieznanej planety, rozpoczęto jej poszukiwania w średniowiecznych tekstach, pojawiła się też hipoteza, że w Układzie Słonecznym krąży pierwotna czarna dziura, a nie nieznana planeta.
Patryk Sofia Lykawka z Uniwersytetu Kindai oraz Takashi Ito z Narodowego Obserwatorium Astronomicznego Japonii i Uniwersytetu Technologii w Chiba opublikowali w The Astronomical Journal pracę, w której opisują właściwości obiektów z Pasa Kuipera, które wskazują na obecność planety.
Wykorzystaliśmy symulację komputerową problemu wielu ciał, by zbadać wpływ hipotetycznej planety w Pasie Kuipera na strukturę orbit obiektów transneptunowych znajdujących się w odległości większej niż 50 jednostek astronomicznych. Do stworzenia naszego modelu wykorzystaliśmy dane obserwacyjne, w tym dobrej jakości dane z Outer Solar System Origins Survey. Stwierdziliśmy, że obecność podobnej do Ziemi planety (o masie od 1,5 do 3 mas Ziemi), znajdującej się na odległej (półoś wielka ok. 250–500 j.a., peryhelium ok. 200 j.a.) orbicie o nachyleniu orbity wynoszącym ok. 30 stopni może wyjaśnić trzy podstawowe właściwości odległych obiektów z Pasa Kuipera: znaczącej populacji obiektów transneptunowych o orbitach poza wpływem grawitacyjnym Neptuna, znaczącą populację obiektów o wysokim nachyleniu orbity (> 45 stopni) oraz istnienie obiektów o wyjątkowo nietypowych orbitach (np. Sedna). Ponadto obecność proponowanej planety jest zgodna ze zidentyfikowanymi długoterminowo stabilnymi obiektami transneptunowymi, pozostającymi w rezonansie 2:1, 5:2, 3:1, 4:1, 5:1 i 6:1 z Neptunem. Ta populacja stabilnych obiektów jest często pomijana w innych badaniach, czytamy w artykule.
Pas Kuipera znajduje się za orbitą Neptuna, w odległości 30–50 jednostek astronomicznych od Ziemi. Zawiera on wiele małych obiektów. To właśnie w nim znajduje się Pluton. Mianem obiektów transneptunowych określa się okrążające Słońce planetoidy znajdujące się poza orbitą Neptuna.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli brązowego karła, którego powierzchnia jest znacznie bardziej gorąca niż powierzchnia Słońca. Tymczasem brązowe karły nie są gwiazdami. To obiekty gwiazdopodobne, których masa jest zbyt mała, by mógł w nich zachodzić proces przemiany wodoru w hel. Mają masę co najmniej 13 razy większą od Jowisza. Od olbrzymich planet różnie je to, że są zdolne do fuzji deuteru. Po jakimś czasie proces ten zatrzymuje się. Najgorętsze i najmłodsze brązowe karły osiągają temperaturę ok. 2500 stopni Celsjusza. Później stygną. Temperatura najstarszych i najmniejszych z nich to około -26 stopni.
W najnowszym numerze Nature Astronomy naukowcy opisali brązowego karła, którego temperatura powierzchni sięga 7700 stopni Celsjusza. To znacznie więcej, niż 5500 stopni, jaką ma temperatura Słońca. Nic więc dziwnego, że gdy na początku XXI wieku po raz pierwszy zauważono ten obiekt, omyłkowo go sklasyfikowano. Dopiero powtórna analiza danych przeprowadzona przez Na'amę Hallakoun z izraelskiego Instytutu Naukowego Weizmanna i jej zespół pokazały, z czym mamy do czynienia.
Nasz brązowy karzeł ma tan olbrzymią temperaturę, gdyż obiega po bardzo ciasnej orbicie białego karła WD 0032-317. To właśnie jego promieniowanie ogrzewa brązowego karła do tak olbrzymich temperatur. Brązowy karzeł znajduje się w obrocie sychronicznym wokół WD 0032-317, co oznacza, że jest cały czas zwrócony w jej kierunku tylko jedną stroną. To zaś powoduje olbrzymie różnice temperatur. Strona nocna brązowego karła jest aż o 6000 stopni Celsjusza chłodniejsza niż strona dzienna.
Gdy układ ten po raz pierwszy zaobserwowano przed dwoma dziesięcioleciami, sądzono, że jest to układ podwójny dwóch białych karłów. Jednak gdy Hallakoun i jej zespół przyjrzeli się danym, zauważyli coś, co kazało im ponownie przyjrzeć się temu układowi. Mogli obserwować go rejestrując linie emisji pochodzące z dziennej strony brązowego karła. Dane były tak zaskakujące, że początkowo naukowcy sądzili, że nieprawidłowo je opracowali. Później zauważyli, że tak naprawdę obserwują układ składający się z białego karła, wokół którego krąży brązowy karzeł. Uczeni, którzy przed 20 laty zaobserwowali ten system, nie zauważyli tego, gdyż obserwowali nocną stronę brązowego karła.
Autorzy odkrycia mówią, że przyda się ono do badania ultragorących Jowiszów, czyli olbrzymich planet krążących blisko swojej gwiazdy. Znalezienie takich planet nastręcza na tyle dużo trudności, że obecnie znamy pojedyncze planety tego typu. Dlatego też astronomowie nie od dzisiaj myślą o wykorzystaniu brązowych karłów krążących blisko gwiazd w roli modelu do badań ultragorących Jowiszów. Brązowe karły łatwiej jest obserwować.
Układ WD 0032-317 rzuci też światło na ewolucję gwiazd. Na podstawie obecnie obowiązujących modeli naukowcy stwierdzili, że brązowy karzeł ma kilka miliardów lat. Z kolei niezwykle wysoka temperatura białego karła WD 0032-317 wskazuje, że istnieje on zaledwie od około miliona lat. Co więcej, ma on masę zaledwie 0,4 mas Słońca. Zgodnie z obowiązującymi teoriami, biały karzeł o tak małej masie nie może istnieć. Ewolucja gwiazdy do takiego stanu musiałaby bowiem trwać dłużej, niż istnieje wszechświat.
Dlatego naukowcy sądzą, że brązowy karzeł przyspieszył ewolucję towarzyszącej mu gwiazdy. Hallakoun i jej zespół uważają, że przez pewien czas oba obiekty znajdowały się we wspólnej otoczce gazowej. Pojawiła się ona, gdy gwiazda macierzysta zmieniła się w czerwonego olbrzyma i pochłonęła brązowego karła. Z czasem wspólna otoczka została usunięta, w czym swój udział miał brązowy karzeł, co doprowadziło do szybszego pojawienia się białego karła.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Białe karły to pozostałości po gwiazdach niedużych gwiazdach. Zbudowane są ze zdegenerowanej materii. Ich masa jest porównywalna z masą Słońca, ale wielkością przypominają Ziemię. Zespół naukowy, na czele którego stoją astronomowie z University of Warwick doniósł o odkryciu drugiego białego karła, który jest pulsarem, obracającą się gwiazdą emitującą wiązkę promieniowania elektromagnetycznego. To niezwykłe odkrycie – dotychczas znaliśmy pulsary, którymi były gwiazdy neutronowe – pozwoli na lepsze zrozumienie ewolucji gwiazd.
Pierwszym odkrytym białym karłem pulsarem był AR Scorpii (AR Sco) zauważony przez uczonych z Warwick w 2016 roku. Teraz odkryli drugą gwiazdę tego typu - J191213.72-441045.1. I w jednym i w drugim przypadku białemu karłowi towarzyszy czerwony karzeł, regularnie omiatany przez promieniowanie emitowane przez pulsar. To powoduje, że nowo odkryty system rozjaśnia się i znacznie przygasa w regularnych odstępach.
Po odkryciu Ar Sco uczeni stwierdzili, że przychylają się do hipotezy dynama, mówiącej, że białe karły mają wewnątrz dynama – czyli generatory elektryczne – którym zawdzięczają swoje potężne pola magnetyczne. Do zweryfikowania tej hipotezy potrzebowali drugiego białego karła pulsara i zaczęli jego poszukiwania. Po 7 latach w końcu się udało.
Nowo odkryty pulsar znajduje się w odległości 773 lat świetlnych od Ziemi i obraca się 300-krotnie szybciej od naszej planety. Jego pełny obrót trwa zaledwie 5,3 minuty, a biały karzeł obiega towarzyszącego mu czerwonego karła w ciągu 4,03 godziny.
Pochodzenie pola magnetycznego to otwarte zagadnienie na wielu polach badawczych astronomii. Jest ono szczególnie trudne w dziedzinie badania białych karłów. Pole magnetyczne białego karła może być ponad milion razy potężniejsze niż pole magnetyczne Słońca, a model dynama pozwala wyjaśnić, dlaczego tak się dzieje. Odkrycie J1912-4410 to kluczowy krok w tym kierunku, mówi doktor Ingrid Pelisoli.
Podczas poszukiwań drugiego białego karła pulsara uczeni wykorzystali dane z różnych źródeł, szukają w nich obiektu o charakterystykach podobnych do AR Sco. Gdy już go znaleźli, zaczęli go badać i potwierdzili, że mają to, czego szukali. Mamy więc potwierdzenie, że istnieje więcej białych karłów pulsarów. Model dynamo przewiduje istnienie takich gwiazd. Zgodnie z nim białe karły pulsary, ze względu na swój zaawansowany wiek, powinny być chłodne. Ich towarzysze powinni być na tyle blisko, by biały karzeł wyciągał z nich materię, co pozwala mu się obracać. Wszystkie te przewidywania się spełniły. Mamy tutaj białego karła o temperaturze niższej niż 13 000 kelwinów, który co pięć minut wykonuje pełny obrót wokół własnej osi i którego oddziaływanie grawitacyjne wywiera duży wpływ na towarzysza, stwierdza Pelisoli.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.