Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'układ podwójny'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Podczas narodzin i początków ewolucji układów planetarnych panują warunki zdecydowanie niesprzyjające powstaniu życia. W gromadach gwiazd, gdzie powstają takie układy, często dochodzi do bliskich spotkań pomiędzy ciałami niebieskimi i gwałtownych oddziaływań pomiędzy nimi. Jednak naukowcy z University of Sheffield znaleźli pewną pozytywną cechę tego gwałtownego okresu w życiu planet. Model opracowany przez studentkę Bethany Wootton i doktora Richarda Parkera pokazuje, że w tym okresie może dochodzić do sprzyjających powstaniu życia zmian w układach podwójnych. Naukowcy odkryli, że gdy z układem podwójnym gwiazd spotka się trzecia gwiazda, jej oddziaływanie może spowodować, że gwiazdy z układu podwójnego przybliżą się do siebie, a to spowoduje rozszerzenie się ekosfery wokół tych gwiazd. Ekosfera, zwana też „strefą Złotowłosej”, to zakres takich odległości od gwiazdy macierzystej, gdzie na znajdujących się tam planetach może istnieć woda w stanie ciekłym. Nie jest tam ani za gorąco ani za zimno. Na planetach znajdujących się w ekosferze z większym prawdopodobieństwem mogą powstać molekuły niezbędne do utworzenia życia niż na planetach spoza ekosfery. Około 1/3 gwiazd w naszej galaktyce to gwiazdy w układach podwójnych i większych. Im młodsze gwiazdy, tym więcej takich układów. Wootton i Parker sprawdzali, jak zmieniają się ekosfery w takich układach. Symulacje komputerowe wykazały, że w typowej gromadzie gdzie rodzą się gwiazdy istnieje 350 układów podwójnych, a 20 z nich to układy, w których gwiazdy zostały do siebie zbliżone przez interakcję z trzecią gwiazdą i tam ekosfera jest większa niż w typowym układzie podwójnym. Nasz model pokazuje, że w ekosferach układów podwójnych znajduje się więcej planet niż przypuszczaliśmy, a to zwiększa szanse na pojawienie się życia. Tak więc ulubiony scenariusz autorów science-fiction, gdzie nad zamieszkałym światem świecą dwa słońca, jest bardziej prawdopodobny niż się wydaje, mówią uczeni. W następnym etapie badań naukowcy chcą sprawdzić, czy negatywne skutki procesu zbliżania do siebie gwiazd układu podwójnego są niwelowane przez skutki pozytywne. Parker i jego zespół sprawdzają obecnie, czy wewnętrzne ciepło generowane przez Ziemię nie pochodzi stąd, że w pobliżu narodzin młodego Słońca doszło do eksplozji supernowej. Takie wydarzenie byłoby katastrofalne dla istniejącego życia na Ziemi, jednak z drugiej strony mogło zapewnić warunki niezbędne do jego pojawienia się. « powrót do artykułu
  2. NASA poinformowała, że odkryty w Boże Narodzenie ubiegłego roku niezwykły rozbłysk gamma został spowodowany albo eksplozją oddalonej o miliardy lat supernowej nieznanego typu, albo też niezwykłą kolizją w naszej własnej galaktyce. Agencja opublikowała właśnie dokument, opisujący obydwa możliwe wydarzenia. Rozbłyski gamma to najpotężniejsze eksplozje we wszechświecie. W ciągu kilku sekund rozbłysk emituje więcej energii niż nasze Słońce wyprodukuje w czasie całego swojego życia. „Rozbłysk bożonarodzeniowy" czyli GRB 101225A został odkryty w gwiazdozbiorze Andromedy przez Swift's Burst Alert Telescope. Ttrwał on co najmniej 28 minut, czyli niezwykle długo jak na tego typu wydarzenie. Obserwacje pozostałej po nim poświaty nie pozwoliły na dokładne określenie odległości miejsca eksplozji od Ziemi. Naukowcy pracujący pod kierunkiem Christiny Thoene z Instituto de Astrofísica de Andalucía wysunęli teorię na temat przyczyn wybuchu. Ich zdaniem mogło do niego dojść w egzotycznym układzie podwójnym, gdzie gwiazda neutronowa obiegała zwykłą gwiazdę, która weszła w etap czerwonego olbrzyma, gwałtownie zwiększając swoją objętość. Gwiazda neutronowa znalazła się wewnątrz olbrzyma i w ciągu kilkunastu miesięcy została wchłonięta przez jego jądro. To przyczyniło się do powstania czarnej dziury i pojawienia się dwóch przeciwbieżnych strumieni cząstek poruszających się niemal z prędkością światła. Powstała też niewielka supernowa. Strumienie wyemitowały promienie gamma, które zaobserwowaliśmy jako rozbłysk. Naukowcy obliczyli, że jeśli takie zdarzenie miało miejsce, to doszło do niego w odległości 5,5 miliarda lat świetlnych od Ziemi. W pobliżu zaobserwowano też obiekt, który może być słabo świecącą galaktyką. Jednak zdaniem Serio Campany z Osservatorio Astronomico di Brera, powyższa interpretacja nie jest jedyną możliwą. Jeśli zaobserwowany obiekt rzeczywiście jest galaktyką, dowiedziona zostanie teoria o systemie podwójnym. Jeśli jednak odkryty zostanie pulsar, teoria Thoene nie utrzyma się. Campana i jego zespół zaproponowali inne możliwe rozwiązanie. Ich zdaniem duży podobny do komety obiekt został zniszczony przez siły pływowe, a jego resztki uderzyły w gwiazdę neutronową znajdującą się w odległości zaledwie 10 000 lat świetlnych od Ziemi. W tym scenariuszu zakłada się, że obiekt, który uległ zniszczeniu, musiał mieć masę równą połowie masy planety karłowatej Ceres. Gdy jego szczątki uderzyły w gwiazdę, doszło do rozbłysku gamma. Należący do NASA Swift's Burst Alert Telescope został wystrzelony w 2004 roku. Urządzenie znacznie zwiększyło naszą wiedzę o rozbłyskach gamma. Jak pokazuje niezwykły GRB 101225A w tej materii wciąż jest bardzo wiele do odkrycia.
  3. W nietypowej, pełnej masywnych gwiazd, gromadzie Westerlund 1, odległej o około 16 tysięcy lat świetlnych od Ziemi, w gwiazdozbiorze Ołtarza (widocznym na półkuli południowej) odkryto magnetar, którego nie powinno tam być. Magnetar to odmiana gwiazdy neutronowej, posiadająca bardo silne pole magnetyczne i wysyłająca błyski promieniowania gamma i rentgenowskiego. Wszystkie gwiazdy neutronowe powstają, kiedy gwiazda wypali już swoje paliwo wodorowe i helowe. Bez tej energii nie potrafi już przeciwstawić się siłom grawitacji i traci stabilność. Kiedy jej płaszcz rozdyma się i eksploduje w postaci supernowej, jądro zapada się, atomy zostają zmiażdżone grawitacją, eletrony i protony zbijają się, tworząc neutrony - powstaje gwiazda neutronowa lub magnetar. Taki los czeka gwiazdy o średnicy od 8 do 20 mas naszego Słońca. Kiedy oszacowano wiek odkrytego magnetara, pojawiło się jednak zaskoczenie. Wiek można było ocenić łatwo - wszystkie gwiazdy w tej gromadzie są rówieśnikami. Długość życia gwiazdy zależy od jej masy, można więc łatwo wyliczyć masę gwiazdy przed jej śmiercią. Gwiazda, z której powstał odkryty magnetar, miała masę czterdzieści razy większą niż Słońce. Ależ to niemożliwe - okrzyknęli astronomowie. Kiedy gwiazda posiada masę równą dwudziestu - dwudziestu pięciu mas Słońca (lub oczywiście większą), jej zapadanie nie kończy się na fazie gwiazdy neutronowej. Pole grawitacyjne takiej ilości masy jest tak duże, że powstaje czarna dziura. Czemu nie powstała ona tutaj, skąd w miejsce czarnej dziury wziął się magnetar? Czy potrzeba znów zmieniać teorie na temat czarnych dziur? Dr Negueruela z University of Alicante oraz dr Ben Ritchie z Open University w swoim studium zaproponowali wyjaśnienie tej zagadki. Jak wyliczyli, supermasywna gwiazda tego rodzaju mogła uniknąć losu czarnej dziury, jeśli przed końcem życia pozbyłaby się 90% swojej masy. Jedynym znanym sposobem na to jest oddanie swojej materii towarzyszowi, jeśli gwiazda była elementem układu podwójnego, tzw. półrozdzielonego. Dostatecznie masywny towarzysz (mający mniejszy rozmiar niż sfera jego „dominacji" grawitacyjnej, czyli tzw, powierzchnia Roche'a) mógłby odebrać gwieździe wystarczającą część masy, żeby zmienić zakończenie jej żywota. Praca, zamieszczona w periodyku Astronomy and Astrophysics, zyskała uznanie za solidne poparcie wywodów obliczeniami, bez uciekania się do trudnych do weryfikacji teorii.
×
×
  • Create New...