Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

We Wrocławiu pracują nad bezpieczniejszym, tańszym i biodegradowalnym kaskiem rowerowym

Recommended Posts

Naukowcy z Politechniki Wrocławskiej pracują nad kaskiem rowerowym z wymienną wkładką. Rozwiązanie takie powinno być tańsze i bardziej bezpieczne dla samego użytkownika, a jako że pianka ma być biodegradowalne, będzie też przyjazne dla środowiska. Zalety nowego kasku w porównaniu z kaskami tradycyjnymi biorą się stąd, że w ciągu ostatnich 45 lat od opracowania pierwszego kasku sportowego, konstrukcja i zasada jego działania nie uległa zasadniczym zmianom.

Kaski chronią głowę dzięki pochłanianiu części energii uderzenia. Wyposażone są w specjalną piankę energochłonną, która pochłania energię, odkształca się jak sprężyna i oddaje mniej energii niż pochłonęła. Jednak takie rozwiązanie ma pewną wadę. Otóż energia uderzenia jest magazynowana w piance, co skutkuje jej deformacją. Dlatego też, przynajmniej teoretycznie, po każdym uderzeniu powinniśmy wymieniać kask. Nie wiemy bowiem, jak bardzo pianka uległa deformacji i jak dobrze będzie w przyszłości nas chroniła. Użytkownik nie jest w stanie ocenić stopnia deformacji pianki i zbadać na ile bezpieczeństwo zapewniane przez kask się zmniejszyło. Producenci zalecają więc wymianę kasku po każdym uderzeniu. To jednak rozwiązanie kosztowne, więc niewiele osób wymienia kask po drobnym upadku.

Uczeni z PWr pracujący pod kierunkiem dr. inż. Pawła Kaczyńskiego z Katedry Obróbki Plastycznej, Spawalnictwa i Metrologii na Wydziale Mechanicznym postanowili rozwiązać ten problem, opracowując kask z wymienną pianką. Uczony zauważa, że wszystkie oferowane dotychczas kaski mają mocowaną na stałe warstwą energochłonną. Dlatego nasze rozwiązanie będzie czymś zupełnie nowym. Pracujemy nad warstwą, która będzie wymienną wkładką. Każdy rowerzysta czy sportowiec po upadku albo zderzeniu będzie mógł łatwo włożyć nową wkładkę do swojego kasku, bez użycia siły czy specjalistycznego oprzyrządowania. Jednocześnie będzie miał pewność, że taka zmiana w żaden sposób nie obniży gwarancji jego bezpieczeństwa. Kask nadal będzie spełniał wymagane prawem normy.

Naukowcy nie ograniczają się jedynie do problemu wymiany wkładki. Chcą też, by stara wkładka ulegała biodegradacji. Biodegradowalność jest dla nas największym wyzwaniem. Musimy stworzyć wkładkę, która z jednej strony rozłoży się pod wpływem działania wody, ale z drugiej będzie ochraniała stale pocącego się kolarza czy narciarza. Staramy się więc opracować takie tworzywo, które – mówiąc wprost – nie rozłoży się nam na głowach. A do tego ważne jest też, by ten materiał pokazywał w jakiś wizualny sposób utratę swoich własności – np. odbarwiał się, marszczył itp. po tym, jak – dajmy na to – kask przez kilka tygodni będzie leżał na stole w słonecznym ogrodzie albo spędzi kilka miesięcy w wilgotnej piwnicy. Tak, żeby użytkownik wiedział: coś tu się zadziało, lepiej wymienić wkładkę na nową.

Problem jest poważniejszy, niż się wydaje. Obecnie stosowane wkładki produkowane są z materiałów ropopochodnych, które rozkładają się ponad 100 lat. Tymczasem w samej tylko Polsce każdego roku wyrzucanych jest około miliona kasków. A to oznacza dodatkowe setki ton odpadów.

Uczeni z Wrocławia zamierzają udoskonalić też samą strukturę pianki. Będzie wykonana w formie otwartych, przestrzennych struktur przypominających plastry miodu i pochłonie energię poprzez plastyczne, wielomiejscowe fałdowanie. Żeby to zrozumieć, wystarczy wyobrazić sobie zgniatanie np. metalu. Energia jest pochłaniana przez odkształcanie tego materiału i sprężynowanie powrotne jest niewielkie. Nie ma więc ryzyka drugiej fazy uderzenia, a do tego bezpowrotne zgniecenie materiału wkładki jest od razu wyraźnym sygnałem dla użytkownika, że trzeba ją wymienić na nową. Tu nie będzie więc pola do zastanawiania się: uszkodzona czy jeszcze da radę? Od razu będzie wiadomo, że już nie spełnia dobrze swojej ochronnej roli.

Naukowcy zapewniają, że ich pianka będzie pochłaniała nawet 84% energii uderzenia, a że ma być też bardziej przewiewna, wygodniej będzie nosić taki kask. Uczeni mają dwa lata na opracowanie nowatorskiego kasku. W tym czasie mają powstać prototypy dla rowerzystów i snowboardzistów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Nieco ponad 15 lat temu podpisano umowę powołującą do życia Konsorcjum Dolnośląskiej Biblioteki Cyfrowej (DBC). Początkowo w bazie znajdowało się ok. 300 publikacji, przede wszystkim ze zbiorów Politechniki Wrocławskiej, obecnie jest ich już blisko 90 tys. Chętni mogą się zapoznać i z cennymi dokumentami historycznymi, i z współczesnymi wydawnictwami.
      Na stronie DBC można zobaczyć, jakie pozycje ostatnio dodano; wśród nich zobaczymy zarówno starodruki, np. "Simona Simonidesa Sielanki" Szymona Szymonowica z 1626 r., jak i niedawno opublikowane artykuły, książki, czasopisma, pomiary inwentaryzacyjne czy rozprawy doktorskie.
      Korzystając z przycisku "Obiekty planowane" na stronie głównej, da się też sprawdzić, jakie pozycje zostaną za jakiś czas udostępnione.
      Projekt koordynuje Politechnika Wrocławska; serwery cyfrowej biblioteki znajdują się we Wrocławskim Centrum Sieciowo-Superkomputerowym.
      Początki i rozwój DBC
      Jak podkreślono w komunikacie DBC, w grudniu 2006 r. dziesięć wrocławskich uczelni wyższych oraz Zakład Narodowy im. Ossolińskich podpisało umowę powołującą do życia Konsorcjum Dolnośląskiej Biblioteki Cyfrowej (DBC). Inicjatywa utworzenia DBC wyszła ze strony Ossolineum i Politechniki Wrocławskiej. Obecnie do projektu należą 22 instytucje.
      Podpisanie umowy umożliwiło współpracę bibliotek w zakresie gromadzenia oraz udostępniania w sieci dolnośląskich zbiorów bibliotecznych. Od początku istnienia DBC jednym z jej głównych celów jest zapewnienie powszechnego i nieograniczonego dostępu do zbiorów naukowo-dydaktycznych, kulturalnych i regionalnych.
      Każda z bibliotek Konsorcjum posiada swój indywidualny zasób. Politechnika Wrocławska chwali się, że na jej kolekcję składają się rozprawy doktorskie, uczelniane czasopisma open access, książki z Oficyny Wydawniczej PWr, materiały bibliologiczne, regionalia czy książki wydane przed 1949 r. (w tej kolekcji podrzędnej znajdują się publikacje, których prawa autorskie wygasły; mamy tu do czynienia z cennymi starodrukami czy książkami naukowymi z różnych dziedzin wiedzy, pochodzącymi głównie z Politechniki Lwowskiej i Technische Hochschule Breslau).
      Warto dodać, że w kolekcji DBC znajdują się np. cyfrowe wersje rękopisów "Pana Tadeusza" Adama Mickiewicza czy "Chłopów" Władysława Reymonta.
      Szeroko zakrojona współpraca
      Dolnośląska Biblioteka Cyfrowa współpracuje z Federacją Bibliotek Cyfrowych (FBC), a ta przekazuje zgromadzone dane innym serwisom internetowym: Europejskiej Bibliotece Cyfrowej EUROPEANA, agregatorowi metadanych europejskich prac naukowych i dysertacji DART Europe czy ViFaOst (Wirtualnej Bibliotece Europy Wschodniej). Na zasadach "linking partnership", czyli wzajemnego linkowania, DBC uczestniczy także w programie Manuscriptorium.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już dziś (19 listopada) o godz. 19 zadebiutuje miniserial dokumentalny Politechniki Wrocławskiej "Nauka do potęgi". Premiera 1. odcinka pt. "Wyzwania współczesnej architektury" będzie miała miejsce na stronie serial.pwr.edu.pl oraz kanale Politechniki Wrocławskiej na YouTube'ie. Kolejne odcinki będą się ukazywać co tydzień do 21 grudnia. Dowiemy się z nich, na przykład, dlaczego wysyłamy w kosmos laboratoria wielkości termosu albo w jaki sposób inżynierowie walczą z nowotworami.
      Poszczególne odcinki będą dotyczyć wyzwań podejmowanych przez naukowców PWr: od walki z nowotworami piersi, przez projektowanie elektrycznych pojazdów i inteligentnych miast, po eksplorację kosmosu.
      Dwanaścioro naukowców opowie o swoich doświadczeniach i pracy. Bohaterami serialu są m.in. prof. dr hab. inż. Jan Dziuban, dyrektor naukowy projektu wystrzelenia pod koniec przyszłego roku w kierunku Marsa polskiego nanosatelity wyposażonego w aparaturę z naszego kraju, czy dr inż. Joanna Bauer, której zespół dostał w 2020 r. europejską nagrodę (Grand Prix konkursu Innovation Radar Prize) dla innowatorów za badania nad terapią nowotworów piersi.
      Kolejne odcinki będą nosić następujące tytuły: "Lepsze życie w mieście", "Inżynierowie komfortu", "Inżynierowie w walce z nowotworami", "Elektromobilność - krok ku przyszłości" oraz "A jeśli Ziemia to za mało?".
      Serial przygotowało niezależne studio filmowe Camera Nera. Narratorem jest Andrzej Ferenc. Za scenariusz i reżyserię odpowiada Łukasz Śródka, za zdjęcia Aleksy Kubiak, a za koncepcję serialu i opiekę merytoryczną Katarzyna Kroczak-Knapik, dyrektorka Działu Informacji i Promocji PWr.
      Łukasz Śródka jest współzałożycielem firmy Camera Nera. Prezentował swoje prace na festiwalach w Polsce i za granicą (w Europie, Ameryce Północnej czy Azji). Stworzył liczne krótkie formy filmowe i pełnometrażowy film dokumentalny "W absolutnej ciszy".
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Politechnice Wrocławskiej (PWr) powstaje e-nos, który pomoże w wykrywaniu źródeł uciążliwych zapachów i monitorowaniu ich poziomu w otoczeniu. Pracuje nad nim dr Justyna Jońca. Realizacja projektu SENSODOR ma potrwać 3 lata.
      Mierzenie zapachu
      Bardzo trudno jest zmierzyć zapach. Typowe techniki analityczne pozwalają określić chemiczny skład mieszaniny odpowiedzialnej za pojawienie się zapachu, ale nie odpowiedzą nam na pytanie, czy jest on przyjemny, jakie ma stężenie czy intensywność. Jak dotąd najlepszym instrumentem do oceny uciążliwości zapachowej jest nasz nos. Techniki pozwalające oszacować uciążliwość zapachową nazywane są olfaktometrią - opowiada dr Jońca.
      Panel ludzkich nosów (wykorzystujący odpowiednie procedury zespół co najmniej 4 osób po przeszkoleniu) może precyzyjnie określić stężenie zapachowe, a także intensywność i jakość hedoniczną mieszanin zapachowych. Elektroniczny nos ma być uzupełnieniem przy tego typu badaniach.
      Zebranie zespołu i przeprowadzenie oceny jest kosztowne i czasochłonne, a w tym czasie źródło uciążliwości zapachowej może zostać zniwelowane na skutek zmiany charakteru emisji i warunków jej towarzyszących. Rozwiązaniem mogą być właśnie nosy elektroniczne, tworzące sieć monitorującą wokół interesującego nas obiektu, np. zakładu gospodarki odpadami komunalnymi. Pozwoli to na prowadzenie ciągłego monitoringu danego obiektu - tłumaczy specjalistka.
      W komunikacie prasowym PWr podkreślono, że choć substancje zapachowe nie są przeważnie szkodliwe dla zdrowia, to przy dłuższej ekspozycji mogą wywoływać np. problemy z koncentracją oraz podrażnienia gardła i oczu.
      Budowa e-nosa
      Elektroniczny nos jest zbudowany z matrycy czujników. Bardzo istotną jego częścią jest warstwa czuła, wyprodukowana z polimerów czy tlenków metali półprzewodnikowych.
      W każdym urządzeniu takich czujników będziemy mieli kilka lub kilkanaście, ale nie będą one selektywne. Oznacza to, że nie będą wykrywały konkretnego związku, ale każdy z wybranych czujników będzie inaczej reagował z analizowaną mieszaniną - zapowiada dr Jońca. Urządzenie ma się znajdować w ochronnej skrzynce z systemem przepływu powietrza.
      Z sygnałów z matrycy będzie powstawał "odcisk zapachu". Co ważne, oprócz tego próbki będzie analizować panel ludzkich nosów.
      Wyniki z obu źródeł będą wprowadzane do komputera, który, jak wyjaśniono w komunikacie uczelni, dzięki zastosowaniu algorytmów uczenia maszynowego będzie się stopniowo uczył. I to do tego stopnia, że finalnie sam będzie w stanie określić stężenie oraz intensywność zapachu nieznanej mu próbki.
      Mam nadzieję, że dzięki zastosowaniu nanotechnologii uda mi się uzyskać lepsze parametry niż w dotychczas stosowanych czujnikach. Dzięki zaprojektowaniu warstwy czułej w nanoskali uzyskać można m.in. wyższą czułość urządzenia - dodaje dr Jońca. Zainstalowanie e-nosa na dronie ułatwiłoby poszukiwanie źródeł uciążliwości zapachowych.
      Trzyletni projekt
      Na samej PWr w projekt zaangażowali się naukowcy z 2 Wydziałów: Inżynierii Środowiska i Mechanicznego. Część badań zrealizuje Laboratorium Chemii Koordynacyjnej Narodowego Centrum Badań Naukowych w Tuluzie. Za kwestie związane z uczeniem maszynowym ma odpowiadać dr Adalbert Arsen. Wg planu, testy e-nosa odbędą się we współpracy z którymś zakładem gospodarowania odpadami w województwie dolnośląskim.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do wystawy głównej międzynarodowego festiwalu Abierto Mexicano de Diseno zakwalifikowano pracę Katarzyny Przybyły, doktorantki Wydziału Architektury PWr. Ekspozycję prezentującą pomysły na przyszłościowe rozwiązania środowiskowe i społeczne można teraz w całości obejrzeć w internecie.
      Projekt naszej doktorantki był częścią wystawy głównej „Design and Utopia: From Manifesto to Action” prezentowanej przez niemal cały październik w Muzeum Franza Mayera w Meksyku. Jej praca została pokazana w sekcji dotyczącej kryzysu klimatycznego („Climate Emergency”) obok plansz poświęconych m.in. Grecie Thunberg i zainicjowanemu przez niej ruchowi „Skolstrejk for Klimate” czy wideo z amerykańską kongresmenką Alexandrią Ocasio-Cortez, autorką koncepcji Nowego Zielonego Ładu.
      Wystawa była rodzajem przeglądu idei, materiałów i produktów, w jakich projektanci, architekci i artyści upatrują nadziei na rozwiązanie problemów środowiskowych i społecznych. Pokazywano tam m.in. dżins z recyklingu czy biomateriały z pestek awocado, ale także ekologiczne i społeczne inicjatywy z całego świata – np. badania włoskiego zespołu Formafantasma, którego członkowie przyglądali się pozyskiwaniu, produkcji i dystrybucji produktów z drewna na całym świecie oraz wpływowi tych praktyk na ziemską biosferę.
      Ekspozycję podzielono na trzy sekcje: Design and Regeneration, Design and Power oraz Climate Emergency. Teraz można ją obejrzeć na stronie festiwalu Abierto Mexicano De Diseno – zarówno w formie e-spaceru po muzealnych salach, jak i opisów poszczególnych eksponatów (często z materiałami wideo). Sam festiwal w tym roku odbył się pod hasłem "Utopia" i miał formę tematycznych wystaw zorganizowanych w trzech największych muzeach Meksyku. Wydarzenie jest organizowane co roku i cieszy się bardzo dużym zainteresowaniem.
      Prezentowana na festiwalu praca naszej doktorantki Katarzyny Przybyły to projekt „Icemill – pure water for global sustainability”. Jest to koncepcja ogromnej instalacji, która pozyskiwałaby wodę pitną z oceanów, bazując na metodzie odsalania przez zamrażanie. Opiera się ona na zjawisku krystalizacji cząsteczek wody – temperatura zamarzania czystej wody jest bowiem wyższa niż roztworu wody morskiej.
      Z tego względu krystalizacji ulegają najpierw cząsteczki czystej wody, oddzielając się od roztworu w postaci lodu. W porównaniu do innych technologii, zamrażanie jest mniej energochłonne i tańsze, a ze względu na ujemną temperaturę roboczą znacznie redukuje korozję – tłumaczy Katarzyna Przybyła.
      Instalacja mogłaby powstać na bazie struktury żyroskopu. Cylinder zewnętrzny służyłby do produkcji lodu i mógł się obracać niezależnie od części wewnętrznej, a umieszczony w środku lodowy młyn obracałby się zgodnie z trzyfazowym cyklem procesu odsalania: produkcji, czyszczenia i topienia lodu. Lód byłby wytwarzany w zbiornikach instalowanych na lodówkach. Zbiornik miałby formę zwężającego się cylindra, co wspomagałoby proces oczyszczania lodu – solanka wypływałaby samodzielnie dzięki grawitacji i wracała do oceanu. Zastosowanie zbiorników zapewniałoby też większe możliwości transportu – czysta woda mogłaby być przewożona nie tylko tankowcami, ale i innymi jednostkami.
      Projekt „Icemill" zdobył także trzy międzynarodowe nagrody: pierwsze miejsce w konkursie reThinking Competition, wyróżnienie honorowe w Evolo Skyscraper i wyróżnienie honorowe w Jacques Rougerie Competition (konkurs organizowany we współpracy z Institut de France, czyli Francuską Akademią Naukową) oraz trzecie miejsce w polskim Konkursie dla Młodych Architektów i Inżynierów magazynu Builder.
      Autorka pracuje właśnie nad rozprawą doktorską na temat współczesnych możliwości i perspektyw kształtowania podwodnych habitatów mieszkalnych (pod opieką promotor dr hab. inż. arch. Barbary Widery, prof. uczelni). Icemill to efekt uboczny moich badań dotyczących odsalania wody morskiej w celu zaopatrywania habitatów w wodę pitną – opowiada Przybyła.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Wydziału Elektroniki Politechniki Wrocławskiej stworzyli ultrakompaktowy laser, który pomoże dokładnie zobrazować siatkówkę i wcześniej wykrywać choroby oczu. Wyniki ich badań ukazały się właśnie w renomowanym czasopiśmie naukowym Biomedical Optics Express.
      Dr hab. Grzegorz Soboń, prof. uczelni, wraz ze swoim zespołem od 2018 roku pracuje nad nowego typu laserami, będącymi tzw. optycznymi grzebieniami częstotliwości. W ramach projektu "Fiber-based mid-infrared frequency combs for laser spectroscopy and environmental monitoring", finansowanego przez Fundację na rzecz Nauki Polskiej, stworzyli właśnie prototyp ultrakompaktowego lasera.
      Jest to tzw. laser femtosekundowy, który można stosować w obrazowaniu tkanek biologicznych – wyjaśnia dr hab. Grzegorz Soboń, lider projektu. Znajdzie on zastosowanie m.in. w obrazowaniu in vivo siatkówki oka, umożliwiając tym samym stworzenie narzędzi do zaawansowanej i wczesnej diagnostyki chorób oczu.
      Prosty, tańszy i skuteczny
      Prototyp, który powstał na Wydziale Elektroniki PWr, ma unikatowe parametry, nieosiągalne przez inne systemy dostępne obecnie na rynku. Laser generuje ultrakrótkie impulsy o czasie trwania 60 fs (60×10-15 sekundy) i długości fali 780 nm (tj. z pogranicza pasma widzialnego i podczerwieni) oraz umożliwia przestrajanie częstotliwości powtarzania impulsów (tzn. regulowanie odstępu czasowego pomiędzy kolejnymi impulsami). Szczególnie ta ostatnia cecha jest niezmiernie istotna i kluczowa do zastosowań w mikroskopii wielofotonowej, gdyż pozwala dostosować częstotliwość impulsów do konkretnych fluoroforów.
      Pokazaliśmy, że zwiększenie odstępu między impulsami, przy zachowaniu ich czasu trwania, pozwala zwiększyć intensywność sygnału fluorescencyjnego mierzonej próbki – opowiada dr hab. Grzegorz Soboń. Jest to istotne w przypadku badań tkanek wrażliwych na uszkodzenie, takich jak ludzkie oko, dla których nie można zastosować dużej mocy optycznej.
      Naukowcom zależało też na maksymalnym uproszczeniu konstrukcji lasera. I to się im udało. Prototyp nie wymaga żadnego justowania ani kalibracji, może być obsługiwany przez personel medyczny, lekarzy, biologów. Jest to laser światłowodowy, tzn. światło jest "uwięzione" we włóknach optycznych i opuszcza je dopiero na samym końcu układu, przed mikroskopem dwufotonowym – wyjaśnia naukowiec z PWr. Dzięki prostej konstrukcji, wykorzystującej nasze "know-how" w zakresie wzmacniania ultrakrótkich impulsów laserowych oraz zjawisk nieliniowych zachodzących w światłowodach, urządzenie to jest także dużo tańsze w produkcji niż konkurencyjny laser tytanowo-szafirowy – dodaje.
      Dzięki współpracy z grupą prof. Macieja Wojtkowskiego (laureat Nagrody FNP, tzw. "Polskiego Nobla", pionier w dziedzinie optycznej tomografii koherencyjnej oka) z Instytutu Chemii Fizycznej Polskiej Akademii Nauk wrocławski laser został zintegrowany z dwufotonowym mikroskopem fluorescencyjnym zbudowanym w IChF.
      Zastosowaliśmy laser do obrazowania wybranych tkanek biologicznych ex vivo, takich jak wątroba żaby, skóra szczura czy wybranych roślin – opowiada dr hab. Grzegorz Soboń. Pokazaliśmy, że przy zmniejszonej częstotliwości powtarzania impulsów możliwe jest uzyskanie proporcjonalnie większej odpowiedzi fluorescencyjnej, co umożliwia uzyskiwanie znakomitej jakości obrazów tkanek, bez ryzyka ich uszkodzenia. Warto podkreślić, iż parametry promieniowania generowanego przez laser również spełniają wymagania bezpieczeństwa pod kątem zastosowania u ludzi – mówi naukowiec.
      Główną konstruktorką lasera jest dr inż. Dorota Stachowiak z Katedry Teorii Pola, Układów Elektronicznych i Optoelektroniki, natomiast badania nad mikroskopią fluorescencyjną zostały przeprowadzone przez dr. inż. Jakuba Bogusławskiego, który doktorat uzyskał na PWr, a obecnie pracuje w Instytucie Chemii Fizycznej PAN. W zespole pracują też Aleksander Głuszek i Zbigniew Łaszczych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...