Sign in to follow this
Followers
0

Naukowcy z Politechniki Wrocławskiej sprawdzą, czy z geotermalnej solanki można pozyskiwać lit
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
We Wrocławskim Centrum Sieciowo-Superkomputerowym Politechniki Wrocławskiej uruchomiono pierwszy w Polsce i Europie Środkowo-Wschodniej komputer kwantowy, który wykorzystuje kubity nadprzewodzące w niskiej temperaturze. Maszyna Odra 5 została zbudowana przez firmę IQM Quantum Computers. Posłuży do badań w dziedzinie informatyki, dzięki niej powstaną nowe specjalizacje, a docelowo program studiów w dziedzinie informatyki kwantowej.
Odra 5 korzysta z 5 kubitów. Waży 1,5 tony i ma 3 metry wysokości. Zwisający w sufitu metalowy walec otacza kriostat, który utrzymuje temperaturę roboczą procesora wynoszącą 10 milikelwinów (-273,14 stopnia Celsjusza).
Rektor Politechniki Wrocławskiej, profesor Arkadiusz Wójs przypomniał, że sam jest fizykiem kwantowym i zajmował się teoretycznymi obliczeniami na tym polu. Idea, żeby w ten sposób prowadzić obliczenia, nie jest taka stara, bo to lata 80. XX w., a teraz minęło kilka dekad i na Politechnice Wrocławskiej mamy pierwszy komputer kwantowy nie tylko w Polsce, ale też
w tej części Europy. Oby się po latach okazało, że to start nowej ery obliczeń kwantowych, stwierdził rektor podczas uroczystego uruchomienia Odry 5.
Uruchomienie komputera kwantowego to ważna chwila dla Wydziału Informatyki i Telekomunikacji Politechniki Wrocławskiej. Jego dziekan, profesor Andrzej Kucharski, zauważył, że maszyna otwiera nowe możliwości badawcze, a w przyszłości rozważamy również uruchomienie specjalnego kierunku poświęconego informatyce kwantowej. Powstało już nowe koło naukowe związane z kwestią obliczeń kwantowych, a jego utworzenie spotkało się z ogromnym zainteresowaniem ze strony studentów. Mamy niepowtarzalną okazję znalezienia się w awangardzie jeśli chodzi o badania i naukę w tym zakresie i mam nadzieję, że to wykorzystamy.
Odra 5 będzie współpracowała z czołowymi ośrodkami obliczeń kwantowych. Dzięki niej Politechnika Wrocławska zyskała też dostęp do 20- i ponad 50-kubitowych komputerów kwantowych stojących w centrum firmy IQM w Finlandii.
« powrót do artykułu -
By KopalniaWiedzy.pl
Lit to kluczowy element przejścia na czystą energię. Wykorzystywany jest przede wszystkim do produkcji akumulatorów samochodowych oraz systemów przechowywania energii ze słońca i wiatru. Jednak obecnie wykorzystywane technologie pozyskiwania litu znacząco zanieczyszczają środowisko naturalne. Australijski Monash University poinformował właśnie o udanych testach pozyskiwania wodorotlenku litu bez użycia wody, środków chemicznych i przy minimalnym zużyciu energii.
Testy prowadzi założona przez uniwersytet firma ElectraLith przy wsparciu giganta górniczego Rio Tinto, a uzyskiwany materiał jest tak dobrej jakości, że nadaje się do produkcji akumulatorów. Opracowana w ubiegłym roku technologia DLE-R (Direct Lithium Extraction and Refining) wykorzystuje elektromembrany i technologię elektrodializy do pozyskiwania wodorotlenku litu w jednym kroku. DLE-R można z łatwością skalować. Jak zapewniają wynalazcy, technologia nadaje się do pozyskiwania litu z różnego rodzaju solanek, czy to istniejących na powierzchni, czy to wydobywanych przy okazji wydobycia ropy naftowej.
Jesteśmy szczególnie zadowoleni z wyników testów w Paradox Basin w Utah. Tam z solanki ze źródeł geotermalnych z dawnych odwiertów, z których wydobywano ropę naftową i gaz, uzyskaliśmy wodorotlenek litu o 99,9-procentowej czystości, nie używając przy tym wody, która jest coraz rzadszym zasobem w basenie Kolorado. To osiągnięcie, w połączeniu z możliwością pozyskiwania wodorotlenku litu ze solanki o nasyceniu litem mniejszym niż 60 części na milion, pokazuje, że DLE-R daje nam dostęp do tych źródeł litu w USA i Australii, których wykorzystanie uważane było dotychczas za nieekonomiczne, stwierdza dyrektor ElectraLith, Charlie McGill. A James Allchurch, dyrektor firmy Mandrake, do której należy pole wydobywcze gdzie prowadzono eksperymenty, już zapowiedział, że jego firma wdroży nową technologię. Niesamowita wydajność procesu DLE-R to kluczowy element naszego sukcesu biznesowego w Utah. DLE-R jest idealnie dostosowana do składu chemicznego solanki z Paradox Basin i chcemy współpracować z ElectraLith w przetwarzaniu większej ilości solanki, dodaje Allchurch.
ElectraLith i Rio Tinto zapowiadają, że w 2026 roku rozpoczną pierwsze testy DLE-R na Salar del Rincón w Argentynie.
« powrót do artykułu -
By KopalniaWiedzy.pl
Nigdy dotąd nie inwestowano tak dużo pieniędzy i talentu w baterie, kończy swoją książkę Łukasz Bednarski. Jak sam twierdzi, stworzył publikację niszową. I nawet jeśli ma rację, to jego książkę czyta się lepiej, niż niejeden tytuł kierowany do szerokiego odbiorcy.
"Lit: złoto przyszłości" to fascynująca opowieść o ludziach, przedsiębiorstwach i państwach biorących udział w toczącej się na naszych oczach rewolucji technologicznej, gospodarczej i politycznej. Ale przede wszystkim to opowieść o pierwiastku, który jest dla XXI wieku tym, czym dla wieku XX była ropa naftowa. Ci, którzy posiadają złoża litu i ci, którzy potrafią z nich skorzystać, mogą już wkrótce decydować o przyszłości świata.
Autor jest analitykiem rynku, ale nie znajdziemy tutaj niezrozumiałego branżowego żargonu, wykresów, wzorów i tabelek. Dostajemy opowieść, w której przewijają się i historia polityczno-gospodarcza prowincji Sinciang, i szara eminencja chilijskiego sektora litowego, czytamy o olbrzymim potencjale drzemiącym w górnictwie miejskim i „Arabii Saudyjskiej litu” – Boliwii, dowiemy się też, że rewolucję elektromobilności chciał rozpocząć już Mao Zedong.
Bednarski w jasny sposób tłumaczy jak zbudowany jest i jak działa akumulator litowo-jonowy, a skomplikowane procesy gospodarcze i polityczne wyjaśnia tak, że ani przez moment nie czujemy się zagubieni czy znudzeni. Książka pozwala zrozumieć, dlaczego lit jest tak ważny, jakie szanse i perspektywy przed nami otwiera, ale również, z jakimi zagrożeniami i konfliktami wiąże się jego wydobycie, jakie trudności trzeba pokonać, by rynek akumulatorów litowych mógł się w pełni rozwinąć. O ile na przeszkodzie nie staną alternatywne pierwiastki, jak magnez czy wodór.
Muszę przyznać, że szerokim łukiem omijam książki z dziedziny analiz rynkowych. Ta jest tak świetnie napisana, że chętnie przeczytam więcej. Najchętniej tego samego autora.
-
By KopalniaWiedzy.pl
Krzem, który jest standardowo wykorzystywany do wytwarzania ogniw słonecznych, jest drogi w pozyskiwaniu i oczyszczaniu. Alternatywną dla niego mogą być znacznie tańsze perowskity, a budowane z nich ogniwa słoneczne już teraz są bardziej wydajne od tych krzemowych. Naukowcy z University of Rochester poinformowali, że ich wydajność można zwiększyć ponad dwukrotnie.
Grupa profesora Chunleia Guo zauważyła, że jeśli w ogniwach perowskitowych w roli substratu użyjemy metalu lub naprzemiennie ułożonych warstw metalu i dielektryka – zamiast standardowo używanego szkła – to wydajność takiego ogniwa wzrośnie aż o 250%. To olbrzymi postęp, gdyż już w tej chwili perowskitowe ogniwa słoneczne charakteryzują się wydajnością przekraczającą 30%.
Nikt dotychczas nie zaobserwował takiego zjawiska. Gdy pod perowskit wsadziliśmy metal nagle doszło do gwałtownej zmiany interakcji elektronów w materiale. Wykorzystaliśmy więc metodę fizyczną do wywołania tej interakcji, mówi Guo. Kawałek metalu może tutaj wykonać tyle roboty, co złożone prace z dziedziny inżynierii chemicznej, cieszy się uczony.
Aby ogniwa słoneczne działały, fotony ze Słońca muszą wzbudzić elektrony w materiale ogniwa fotowoltaicznego, które w wyniku tego opuszczą swoje dotychczasowe miejsca i wygenerują prąd. Idealnie byłoby, gdyby do budowy ogniw użyć materiału, w którym wzbudzone elektrony są bardzo słabo wciągane z powrotem na swoje miejsca. Zespół Guo wykazał, że w perowskitach takiej rekombinacji, powrotu wzbudzonych elektronów na miejsce, można uniknąć łącząc perowskit z metalem lub metamateriałem zbudowanym z naprzemiennych warstw srebra i tlenku aluminium. Wówczas, dzięki wielu zdumiewającym zjawiskom fizycznym ma miejsce znaczna redukcja liczby rekombinacji. Jak wyjaśnia Guo, warstwa metalu działa jak lustro tworzące odwrócone obrazy par dziura-elektron, zmniejszając prawdopodobieństwo rekombinacji elektronów z dziurami. Za pomocą prostego miernika zaobserwowano, że wydajność perowskitowego ogniwa zwiększyła się o 250%.
Perowskity to niezwykle obiecująca grupa materiałów pod względem produkcji energii elektrycznej ze Słońca. Mają jednak poważną wadę. Ulegają szybkiej degradacji pod wpływem wysokiej temperatury i ich wydajność drastycznie spada. Jednak i na tym polu widoczny jest wyraźny postęp. Gdy rozpoczynano badania perowskitów pod kątem ich wykorzystania do pozyskiwania energii elektrycznej, perowskitowe ogniwa pracowały od kilku minut do kilku godzin. W ubiegłym roku w US National Renewable Energy Laboratory powstało perowskitowe ogniwo fotowoltaiczne, które po 2400 godzinach nieprzerwanej pracy w temperaturze 55 stopni Celsjusza zachowało 87% swojej pierwotnej sprawności. Czas pracy ogniw perowskitowych może już teraz sięgać wielu miesięcy. A ich wydajność właśnie zwiększono o 250%.
Solar Energy Technologies Office, działające w ramach amerykańskiego Departamentu Energii, stawia sobie za cel opracowanie perowskitowego ogniwa, które będzie działało przez co najmniej 20, a idealnie ponad 30 lat.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z University of Chicago opracowali sposób na wytwarzanie materiału, który można produkować równie łatwo jak plastik, ale który przewodzi elektryczność tak dobrze, jak metale. Na łamach Nature uczeni opisali, w jaki sposób stworzyć dobrze przewodzący materiał, którego molekuły są nieuporządkowane. Jego istnienie przeczy temu, co wiemy o elektryczności.
Nasze odkrycie pozwala na stworzenie nowej klasy materiałów, które przewodzą elektryczność, są łatwe w kształtowaniu i bardzo odporne na warunki zewnętrzne, mówi jeden z głównych autorów badań, profesor John Anderson. To sugeruje możliwość istnienia nowej grupy materiałów, niezwykle ważnej z technologicznego punktu widzenia, dodaje doktor Jiaze Xie.
Materiały przewodzące są nam niezbędne w codziennym życiu. To dzięki nim funkcjonują urządzenia napędzane prądem elektrycznym. Najstarszą i największa grupą takich materiałów są metale, jak miedź czy złoto. Około 50 lat temu stworzono przewodniki organiczne, w których materiał wzbogacany jest o dodatkowe atomy. Takie przewodniki są bardziej elastyczne i łatwiej jest je przetwarzać niż metale, jednak są mało stabilne i w niekorzystnych warunkach – przy zbyt wysokiej temperaturze czy wilgotności – mogą tracić swoje właściwości.
I metale i przewodniki organiczne mają pewną cechę wspólną – są zbudowane z uporządkowanych molekuł. Dzięki temu elektrony mogą z łatwością się w nich przemieszczać. Naukowcy sądzili więc, że warunkiem efektywnego przewodnictwa jest uporządkowana struktura przewodnika.
Jiaze Xie zaczął jakiś czas temu eksperymentować z wcześniej odkrytymi, jednak w dużej mierze pomijanymi, materiałami. Długie łańcuchy węgla i siarki poprzeplatał atomami niklu. Ku zdumieniu jego i jego kolegów okazało się, że taka nieuporządkowana struktura świetnie przewodzi prąd. Co więcej, okazała się bardzo stabilna. Podgrzewaliśmy nasz materiał, schładzaliśmy, wystawialiśmy na działanie powietrza i wilgoci, nawet zamoczyliśmy w kwasie i nic się nie stało, mówi Xie. Najbardziej jednak zdumiewający był fakt, że struktura materiału była nieuporządkowana. On nie powinien tak dobrze przewodzić prądu. Nie mamy dobrej teorii, która by to wyjaśniała, przyznaje profesor Anderson.
Andreson i Xie poprosili o pomoc innych naukowców ze swojej uczelni, by wspólnie zrozumieć, dlaczego materiał tak dobrze przewodzi elektryczność. Obecnie naukowcy sądzą, że tworzy on warstwy. I pomimo, że poszczególne warstwy nie są uporządkowane, to tak długo, jak się ze sobą stykają, elektrony mogą pomiędzy nimi swobodnie przepływać.
Jedną z olbrzymich zalet nowego materiału jest możliwość łatwego formowania. Metale zwykle trzeba stopić, by uzyskać odpowiedni kształt. To proces nie tylko energochłonny, ale i poważnie ograniczający ich zastosowanie, gdyż oznacza, że inne elementu budowanego układu czy urządzenia muszą wytrzymać wysokie temperatury podczas produkcji. Nowy materiał pozbawiony jest tej wady. Można go uzyskiwać w temperaturze pokojowej i używać tam, gdzie występują wysokie temperatury, środowisko kwasowe, zasadowe czy wysoka wilgotność. Dotychczas wszystkie tego typu zjawiska poważnie ograniczały zastosowanie nowoczesnych technologii.
Badania nad nowym materiałem są finansowane przez Pentagon, Departament Energii oraz Narodową Fundację Nauki.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.