Nowe szczepionki na COVID-19 nie będą wymagały niskich temperatur. Mają też wiele innych zalet
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Dzieci i młodzież w wieku 10-19 lat, u których zdiagnozowano COVID-19 są narażone na większe ryzyko rozwoju cukrzycy typu 2. w ciągu 6 miesięcy po diagnozie, niż ich rówieśnicy, którzy zapadli na inne choroby układu oddechowego. Takie wnioski płyną z badań przeprowadzonych przez naukowców z Wydziału Medycyny Case Western Reserve University. Uczeni przeprowadzili metaanalizę wpływu COVID-19 na ryzyko rozwoju cukrzycy typu 2. u dorosłych, a następnie postanowili poszerzyć swoją wiedzę o wpływ infekcji na osoby młodsze.
Badacze przeanalizowali przypadki 613 602 pacjentów pediatrycznych. Dokładnie połowę – 306 801 – stanowiły osoby, u których zdiagnozowano COVID-19, w drugiej grupie znaleźli się młodzi ludzie, którzy zachorowali na inne choroby układu oddechowego. Poza tym obie grupy były do siebie podobne. Dodatkowo utworzono też dwie podgrupy po 16 469 pacjentów, w których znalazły się osoby z otyłością oraz COVID-19 lub inną chorobą układu oddechowego.
Naukowcy porównali następnie liczbę nowo zdiagnozowanych przypadków cukrzycy typu 2. w obu grupach. Pod uwagę brano diagnozy, które postawiono miesiąc, trzy miesiące i sześć miesięcy po wykryciu pierwszej z chorób. Okazało się, że ryzyko rozwoju cukrzycy u osób, które zachorowały na COVID-19 było znacznie wyższe. Po 1 miesiącu było ono większe o 55%, po trzech miesiącach o 48%, a po pół roku – o 58%. Jeszcze większe było u osób otyłych. W przypadku dzieci i nastolatków, które były otyłe i zapadły na COVID-19 ryzyko zachorowania na cukrzycę było o 107% wyższe po 1 miesiącu, o 100% wyższe po drugim i o 127% wyższe po pół roku. Największe jednak niebezpieczeństwo związane z rozwojem cukrzycy wisiało nad tymi, którzy z powodu COVID-19 byli hospitalizowani. Ryzyko to było większe – odpowiednio do czasu po diagnozie COVID-19 – o 210%, 174% i 162%.
Obecnie nie wiadomo, jaki może być związek COVID-19 z cukrzycą. Tym bardziej, że przeprowadzone badania to analiza retrospektywna, która nie pozwala na wykazanie związku przyczynowo-skutkowego. Potrzeba więc dalszych badań, które pozwolą określić, czy zachorowanie na COVID-19 w jakikolwiek sposób wpływa na układy związane z działaniem glukozy czy insuliny w naszym organizmie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wielka bioróżnorodność lasów deszczowych czy raf koralowych to rzecz powszechnie znana. Mało kto jednak zdaje sobie sprawę, jak olbrzymia bioróżnorodność występuje w jego własnym domu. A konkretnie na szczoteczce do zębów i słuchawce od prysznica. Grupa naukowców z Northwestern University odkryła w tych miejscach zaskakująco duże zróżnicowanie wirusów, z czego wiele gatunków nie było dotychczas znanych nauce. Uczeni badali bakteriofagi, zidentyfikowane przez nich organizmy nie są niebezpieczne dla ludzi.
Mieszkańcy krajów rozwiniętych zdecydowaną większość czasu spędzają w budynkach. Ich zdrowie i dobrostan są powiązane ze środowiskiem wewnątrz tych budynków, w tym z ich mikrobiomami. To dwustronne oddziaływanie. Mikroorganizmy w budynkach wpływają na nas, a my wpływamy na nie. Nasze zachowania, sprzątanie mieszkania, używane środki chemiczne i higieny osobistej, to co jemy, wpływają na skład mikrobiomów. Uczeni z Northwestern zbadali wirusy w domowych biofilmach, skupiając się na słuchawkach od pryszniców oraz szczoteczkach do zębów. Wiemy bowiem, że bakteriofagi, wirusy atakujące bakterie i wysoce specyficzne dla konkretnych ich gatunków, wpływają na strukturę i funkcjonowanie bakteryjnych społeczności. A prysznic czy szczoteczka do zębów to środowiska podlegające dynamicznym zmianom. Zamieszkujące je mikroorganizmy mają do czynienia z ekstremalnymi zmianami temperatur, okresami wysokiej wilgotności oraz wysychania, są wystawione na działanie produktów chemicznych używanych i do higieny osobistej i do utrzymani czystości w łazience.
Badacze przeprowadzili kompleksową analizę genetyczną mikroorganizmów zamieszkujących 34 szczoteczki do zębów i 92 słuchawki do prysznica. Znaleźli na nich ponad 600 gatunków wirusów, z których wiele nie było dotychczas znanych. Szczoteczki do zębów i słuchawki prysznicowe do siedliska fagów zupełnie odmienne od innych, mówi główna autorka badań, Erica M. Hartmann. Badania pokazały, że szczoteczki i słuchawki są zasiedlone prze różne fagi. Co więcej, każdy z badanych przedmiotów miał własny, unikatowy skład mikroorganizmów. Olbrzymie zróżnicowanie mikroorganizmów zaskoczyło uczonych i pokazało, jak wielu bakteriofagów jeszcze nie znamy.
Po co jednak badać mikroorganizmy, które nie są szkodliwe dla człowieka? Fagi są interesujące z punktu widzenia biotechnologii i medycyny. Penicylina pochodzi z pleśni na chlebie. Być może kolejny rewolucyjny antybiotyk zostanie stworzony z czegoś, co żyje na twojej szczoteczce do zębów, wyjaśnia Hartmann.
Uczona dodaje, że projekt badawczy rozpoczął się od zwykłej ciekawości. Jesteśmy otoczeni mikroorganizmami. Jednak ściany czy stoły to dla nich trudne środowisko. Preferują one miejsca, gdzie jest woda. A ta powszechnie występuje na szczoteczkach do zębów i słuchawkach.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tegoroczną Nagrodę Nobla w dziedzinie fizjologii lub medycyny otrzymali Katalin Karikó i Drew Weissmann za odkrycia, które umożliwiły opracowanie efektywnych szczepionek mRNA przeciwko COVID-19. W uzasadnieniu przyznania nagrody czytamy, że prace Karikó i Wiessmanna w olbrzymim stopniu zmieniły rozumienie, w jaki sposób mRNA wchodzi w interakcje na naszym układem odpornościowym". Tym samym laureaci przyczynili się do bezprecedensowo szybkiego tempa rozwoju szczepionek, w czasie trwania jednego z największych zagrożeń dla ludzkiego życia w czasach współczesnych.
Już w latach 80. opracowano metodę wytwarzania mRNA w kulturach komórkowych. Jednak nie potrafiono wykorzystać takiego mRNA w celach terapeutycznych. Było ono nie tylko niestabilne i nie wiedziano, w jaki sposób dostarczyć je do organizmu biorcy, ale również zwiększało ono stan zapalny. Węgierska biochemik, Katalin Karikó, pracowała nad użyciem mRNA w celach terapeutycznych już od początku lat 90, gdy była profesorem na University of Pennsylvania. Tam poznała immunologa Drew Weissmana, którego interesowały komórki dendrytyczne i ich rola w układzie odpornościowym.
Efektem współpracy obojga naukowców było spostrzeżenie, że komórki dendrytyczne rozpoznają uzyskane in vitro mRNA jako obcą substancję, co prowadzi co ich aktywowania i unicestwienia mRNA. Uczeni zaczęli zastanawiać się, dlaczego do takie aktywacji prowadzi mRNA transkrybowane in vitro, ale już nie mRNA z komórek ssaków. Uznali, że pomiędzy oboma typami mRNA muszą istnieć jakieś ważne różnice, na które reagują komórki dendrytyczne. Naukowcy wiedzieli, że RNA w komórkach ssaków jest często zmieniane chemicznie, podczas gdy proces taki nie zachodzi podczas transkrypcji in vitro. Zaczęli więc tworzyć różne odmiany mRNA i sprawdzali, jak reagują nań komórki dendrytyczne.
W końcu udało się stworzyć takie cząsteczki mRNA, które były stabilne, a po wprowadzeniu do organizmu nie wywoływały reakcji zapalnej. Przełomowa praca na ten temat ukazała się w 2005 roku. Później Karikó i Weissmann opublikowali w 2008 i 2010 roku wyniki swoich kolejnych badań, w których wykazali, że odpowiednio zmodyfikowane mRNA znacząco zwiększa produkcję protein. W ten sposób wyeliminowali główne przeszkody, które uniemożliwiały wykorzystanie mRNA w praktyce klinicznej.
Dzięki temu mRNA zainteresowały się firmy farmaceutyczne, które zaczęły pracować nad użyciem mRNA w szczepionkach przeciwko wirusom Zika i MERS-CoV. Gdy więc wybuchła pandemia COVID-19 możliwe stało się, dzięki odkryciom Karikó i Weissmanna, oraz trwającym od lat pracom, rekordowo szybkie stworzenie szczepionek.
Dzięki temu odkryciu udało się skrócić proces, dzięki czemu szczepionkę podajemy tylko jako stosunkowo krótką cząsteczkę mRNA i cały trik polegał na tym, aby ta cząsteczka była cząsteczką stabilną. Normalnie mRNA jest cząsteczką dość niestabilną i trudno byłoby wyprodukować na ich podstawie taką ilość białka, która zdążyłaby wywołać reakcję immunologiczną w organizmie. Ta Nagroda Nobla jest m.in. za to, że udało się te cząsteczki mRNA ustabilizować, podać do organizmu i wywołują one odpowiedź immunologiczną, uodparniają nas na na wirusa, być może w przyszłości bakterie, mogą mieć zastosowanie w leczeniu nowotworów, powiedziała Rzeczpospolitej profesor Katarzyna Tońska z Uniwersytetu Warszawskiego.
Myślę, że przed nami jest drukowanie szczepionek, czyli dosłownie przesyłanie sekwencji z jakiegoś ośrodka, który na bieżąco śledzi zagrożenia i na całym świecie produkcja już tego samego dnia i w ciągu kilku dni czy tygodni gotowe preparaty dla wszystkich. To jest przełom. Chcę podkreślić, że odkrycie noblistów zeszło się z możliwości technologicznymi pozwalającymi mRNA sekwencjonować szybko, tanio i dobrze. Bez tego odkrycie byłoby zawieszone w próżni, dodał profesor Rafał Płoski z Warszawskiego Uniwersytetu Medycznego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podczas pandemii SARS-CoV-2 widzieliśmy olbrzymie spektrum manifestacji klinicznych zarażenia wirusem, od infekcji bezobjawowych po zgony. Naukowcy z Instytutu Pasteura, francuskiego Narodowego Centrum Badań Naukowych we współpracy ze specjalistami z całego świata przyjrzeli się przyczynom różnic w reakcji układu odpornościowego na SARS-CoV-2 wśród różnych populacji. Wykazali, że utajona infekcja cytomegalowirusem oraz czynniki genetyczne miały swój udział w manifestacjach reakcji organizmu na koronawirusa.
Wiemy, że głównym czynnikiem ryzyka zgonu jest zaawansowany wiek. Dodatkowymi są płeć męska, choroby współistniejące i czynniki genetyczne oraz immunologiczne. Naukowcy badający wpływ różnych czynników na odpowiedź organizmu na SARS-CoV-2 pobrali próbki krwi od 222 zdrowych ochotników zamieszkujących region od Afryki Środkowej i Europy Zachodniej po Azję Wschodnią. Wykorzystali technikę sekwencjonowania RNA do określenia, w jaki sposób 22 różne rodzaje komórek krwi reaguja na obecność koronawirusa. Następnie połączyli tak uzyskane informacje z wynikami badań układu odpornościowego i genomu osób, od których pobrano krew.
Naukowcy zidentyfikowali około 900 genów, których reakcja na obecność wirusa była różna u różncyh populacji. Za pomocą statystycznych analiz genetycznych uczeni wykazali, że różnice te wynikają z różnic w składzie krwi. Proporcje poszczególnych typów komórek są różne u różnych populacji. Wiadomo jednak, że na skład krwi mają też wpływ czynniki zewnętrze. Jednym z nich jest infekcja cytomegalowirusem. W Afryce Środkowej jest on obecny u 99% populacji, w Azji Wschodniej u 50% ludzi, a w Europie jego nosicielem jest 32% mieszkańców. Z badań wynika, że utajona infekcja tym wirusem ma wpływ na reakcję organizmu na SARS-CoV-2.
Ponadto zidentyfikowano około 1200 genów, których ekspresja w warunkach zarażenia SARS-CoV-2 jest różna w różnych populacjach i jest kontrolowana przez czynniki genetyczne i zależy od częstotliwości alleli regulujących te geny. Na ten czynnik miała wpływ presja selekcyjna z przeszłości. Wiemy, że czynniki zakaźne miały olbrzymi wpływ na przeżycie człowieka i wywierały silną presję selekcyjną, która ukształtowała różnice genetyczne na poziomie całych populacji. Wykazaliśmy, że presja selekcyjna z przeszłości wpłynęła na odpowiedź immunologiczną na SARS-CoV-2. Jest to widoczne szczególnie u osób pochodzących z Azji Wschodniej. Około 25 000 lat temu koronawirusy wywarły silną presję selekcyjna na te populacje, mówi Maxime Rotival.
Na przebieg infekcji miały też wpływ geny odziedziczone po neandertalczykach. Stanowią one ok. 2% genomu mieszkańców kontynentów innych niż Afryka i mamy coraz więcej dowodów na to, że wpływają one na naszą obecność odporność na infekcję. Nie tylko zresztą na nią. Mają też wpływ na to, czy palimy papierosy i pijemy alkohol. Teraz naukowcy zidentyfikowali dziesiątki genów, które zmieniają reakcję na infekcję, a ich obecność to skutek krzyżowania się H. sapiens z neandertalczykiem.
Wykazaliśmy istnienie związku pomiędzy dawnymi wydarzeniami mającymi wpływ na ewolucję, jak selekcja naturalna czy krzyżowanie się z neandertalczykami, a obecnymi różnicami populacyjnymi w reakcji na infekcję, dodaje profesor Lluis Quintana-Murci.
Szczegóły badań zostały opisane w artykule Dissecting human population variation in single-cell responses to SARS-CoV-2 opublikowanym na łamach Nature.
« powrót do artykułu -
przez KopalniaWiedzy.pl
U większości osób chorujących na COVID-19 pojawiały się objawy ze strony centralnego układu nerwowego, takie jak utrata węchu czy smaku. Naukowcy wciąż badają, w jaki sposób SARS-CoV-2 wywołuje objawy neurologiczne i jak wpływa na mózg. Autorzy najnowszych badań informują, że ciężka postać COVID-19 wywołuje zmiany w mózgu, które odpowiadają zmianom pojawiającym się w starszym wieku.
Odkrycie to każe zadać sobie wiele pytań, które są istotne nie tylko dla zrozumienia tej choroby, ale dla przygotowania społeczeństwa na ewentualne przyszłe konsekwencje pandemii, mówi neuropatolog Marianna Bugiani z Uniwersytetu w Amsterdamie.
Przed dwoma laty neurobiolog Maria Mavrikaki z Beth Israel Deaconess Medical Center w Bostonie trafiła na artykuł, którego autorzy opisywali pogorszenie zdolności poznawczych u osób, które przeszły COVID-19. Uczona postanowiła znaleźć zmiany w mózgu, które mogły odpowiadać za ten stan. Wraz ze swoim zespołem zaczęła analizować próbki kory czołowej 21 osób, które zmarły z powodu ciężkiego przebiegu COVID-19 oraz osoby, która w chwili śmierci była zarażona SARS-CoV-2, ale nie wystąpiły u niej objawy choroby. Próbki te porównano z próbkami 22 osób, które nie były zarażone SARS-CoV-2. Drugą grupą kontrolną było 9 osób, które nie zaraziły się koronawirusem, ale przez jakiś czas przebywały na oddziale intensywnej opieki zdrowotnej lub były podłączone do respiratora. Wiadomo, że tego typu wydarzenia mogą mieć poważne skutki uboczne.
Analiza wykazały, że geny powiązane ze stanem zapalnym i stresem były bardziej aktywne u osób, które cierpiały na ciężką postać COVID-19 niż osób z grup kontrolnych. Z kolei geny powiązane z procesami poznawczymi i tworzeniem się połączeń między neuronami były mniej aktywne.
Zespół Mavrikaki dokonał też dodatkowego porównania tkanki mózgowej osób, które cierpiały na ciężką postać COVID-19 Porównano ją z 10 osobami, które w chwili śmierci miały nie więcej niż 38 lat oraz z 10 osobami, które zmarły w wieku co najmniej 71 lat. Naukowcy wykazali w ten sposób, że zmiany w mózgach osób cierpiących na ciężki COVID były podobne do zmian w mózgach osób w podeszłym wieku.
Amerykańscy naukowcy podejrzewają, że wpływ COVID-19 na aktywność genów w mózgu jest raczej pośredni, poprzez stan zapalny, a nie bezpośredni, poprzez bezpośrednie zainfekowanie tkanki mózgowej.
Uczeni zastrzegają przy tym, że to jedynie wstępne badania, które mogą raczej wskazywać kierunek dalszych prac, niż dawać definitywne odpowiedzi. Mavrikaki mówi, że nie ma absolutnej pewności, iż obserwowane zmiany nie były wywołane innymi infekcjami, ponadto w badaniach nie w pełni kontrolowano inne czynniki ryzyka, jak np. otyłość czy choroby mogące ułatwiać rozwój ciężkiej postaci COVID-19, a które same w sobie mogą prowadzić do stanów zapalnych wpływających na aktywność genów centralnego układu nerwowego.
Innym pytaniem, na jakie trzeba odpowiedzieć, jest czy podobne zmiany zachodzą w mózgach osób, które łagodniej przeszły COVID-19. Z innych badań wynika bowiem, że nawet umiarkowanie ciężki COVID mógł powodować zmiany w mózgu, w tym uszkodzenia w regionach odpowiedzialnych za smak i węch. Nie wiadomo też, czy tego typu zmiany się utrzymują i na jak długo.
Ze szczegółami badań można zapoznać się w artykule Severe COVID-19 is associated with molecular signatures of aging in the human brain.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.