
Dwukrotnie wykryli poruszający się foton, nie niszcząc go przy tym. Przyspieszy to sieci kwantowe
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Eksperci z Quantum Internet Alliance (QIA) ogłosili powstanie pierwszego systemu operacyjnego dla sieci kwantowych – QNodeOS. To olbrzymi krok naprzód w kierunku uczynienia z sieci kwantowych praktycznej technologii. W skład QIA wchodzą naukowcy z Uniwersytetu Technologicznego w Delft, Uniwersytetu w Innsbrucku, Instytutu badań nad kwantowym przetwarzaniem i kwantowym internetem (QuTech), Francuskiego Narodowego Instytutu Badawczego Nauk Komputerowych i Automatyzacji (INRIA) oraz Francuskiego Narodowego Centrum Badań Naukowych (CNRS).
Naszym celem jest zapewnienie wszystkim dostępu do kwantowej technologii sieciowej. Dzięki QNodeOS robimy wielki krok naprzód. Dzięki temu po raz pierwszy stało się możliwe łatwe programowanie i wykonywanie aplikacji działających w sieciach kwantowych, mówi profesor Stephanie Wehner, która stała na czele grupy badawczej. Nasze prace otwierają też całkowicie nowe pola w badaniach nad komputerami kwantowymi, dodaje.
Tym, co pozwoliło na rozpowszechnienie się klasycznych komputerów była możliwość łatwego tworzenia oprogramowania. I właśnie to umożliwia QNodeOS. System jest podobny do oprogramowania, która mamy w domu. Dzięki niemu nie musimy wiedzieć, jak działa sprzęt, by go używać, dodaje Mariagrazia Iuliano, doktorantka w QuTech.
QNodeOS pozwala na programowanie aplikacji wysokiego poziomu, podobnie jak programowane są obecnie aplikacje dla Windows czy Androida. W przeciwieństwie do dotychczasowych systemów dla komputerów kwantowych, programista nie musi brać pod uwagę specyfiki sprzętowej czy konfiguracji maszyny, na której ma działać jego program. Uruchamiając swój system na dwóch różnych procesorach badacze wykazali, że QNodeOS może współdziałać z różnymi typami sprzętu. Procesor bazujący na uwięzionych jonach działa zupełnie inaczej od procesorów wykorzystujących centra barwne (defekty krystaliczne) w diamentach. Mimo to wykazaliśmy, że nasz system pracuje na obu tych typach procesorów, cieszy się profesor Tracy Northup z Uniwersytetu w Innsbrucku.
Teraz twórcy nowego systemu pracują nad zapewnieniem wszystkim chętnym dostępu do odpowiedniego oprogramowania i sprzętu. Naukowcy chcą, między innymi, udostępnić QNodeOS na Quantum Network Explorer, pokazowej sieci kwantowej stworzonej prze QuTech. Dzięki temu chętni będą mogli eksperymentować z nowym systemem i tworzyć nań oprogramowanie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z University of Birmingham opublikowali na łamach Physical Review Letters artykuł, w którym niezwykle szczegółowo opisali naturę fotonów, ich interakcję z materią oraz sposób, w jaki są emitowane przez atomy i molekuły oraz kształtowane przez środowisko. W ten sposób mogli precyzyjnie opisać kształt pojedynczego fotonu. Zadanie to przekraczało dotychczas możliwości nauki, gdyż foton może propagować się w środowisku na niezliczoną liczbę sposobów, przez co trudno jest modelować interakcje, w jakie wchodzi.
Nasze obliczenia pozwoliły nam na przełożenie pozornie nierozwiązywalnego problemu w coś, co można obliczyć. A produktem ubocznym naszego modelu jest możliwość stworzenia obrazu pojedynczego fotonu, czego dotychczas nikt nie dokonał, mówi doktor Benjamin Yuen z Wydziału Fizyki i Astronomii University of Birmingham.
Współautorka badań, profesor Angela Demetriadou stwierdziła: geometria i właściwości optyczne środowiska mają olbrzymi wpływ na sposób emitowania fotonów, definiują ich kształt, barwę, a nawet to, z jakim prawdopodobieństwem istnieją.
Praca brytyjskich uczonych pogłębia naszą wiedzę na temat wymiany energii pomiędzy światłem a materią, pozwala lepiej zrozumieć, w jaki sposób światło wpływa na bliższe i dalsze otoczenie. Pozwolą lepiej manipulować interakcjami światła z materią, a więc przyczynią się do udoskonalenia czujników, ogniw fotowoltaicznych czy komputerów kwantowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Komputery kwantowe mają rozwiązywać problemy, z którymi nie radzą sobie komputery klasyczne. Maszyny, które udało się zbudować, bazują zwykle na superpozycji stanów elektronicznych, na przykład na dwóch różnych ładunkach. Problem w tym, że kubity elektromagnetyczne szybko ulegają dekoherencji, tracą swój stan kwantowy. Wówczas superpozycja ulega zniszczeniu i nie mamy już do czynienia z kubitem. To obecnie znacząco ogranicza możliwości komputerów kwantowych. Wkrótce jednak może się to zmienić, gdyż naukowcy z Federalnego Instytutu Technologii w Zurychu stworzyli długo działający mechaniczny kubit.
Szwajcarski kubit to miniaturowa wersja membrany instrumentu perkusyjnego. Zachowuje się ona w sposób podobny do kota Schrödingera – jednocześnie wibruje i nie wibruje. Jest więc w superpozycji. Wykorzystanie mechanicznego kubitu mogłoby doprowadzić do powstania mechanicznych komputerów kwantowych, zdolnych do przeprowadzania długotrwałych, złożonych obliczeń.
Specjaliści, próbujący stworzyć mechaniczny kubit, mierzyli się z olbrzymim problemem związanym ze stanami energetycznymi. Standardowe kubity elektromagnetyczne zachowują się anharmonicznie, co oznacza, że pomiędzy ich stanami elektronicznymi istnienie nierównowaga energii i to właśnie czyni je użytecznymi kubitami. Z mechanicznymi rezonatorami, takimi jak wspomniana powyżej membrana, problem polega na tym, że są one harmoniczne. Poziomy energii pomiędzy wibracjami są równe, więc wykorzystanie ich jako kubitów jest niemożliwe. Zaproponowano więc rozwiązanie problemu, które miało polegać na połączeniu takiego mechanicznego oscylatora z najlepiej działającym elektromagnetycznym kubitem. Jednak czas działania takiej hybrydy uzależniony był od czasu dekoherencji kubita elektromagnetycznego. Całość nie sprawdzała się dobrze.
Naukowcy z Zurychu wpadli więc na inny pomysł. Ich kubit składa się z elementu piezoelektrycznego umieszczonego na szafirowej płytce – to część mechaniczna – połączonego z szafirowym anharmonicznym elementem.
Prototypowy układ osiąga czas koherencji rzędu 200 mikrosekund, działa więc 2-krotnie dłużej niż przeciętny kubit nadprzewodzący. Co prawda obecnie najlepsze kubity osiągają czas koherencji około 1 milisekundy, jest to więc około 5-krotnie dłużej niż mechaniczny kubit z Zurychu, ale mowa tutaj o wyjątkowych kubitach, nad którymi prace trwają od wielu lat.
Szwajcarscy naukowcy zapewniają, że eksperymentując z różnymi materiałami i architekturami będą w stanie znacząco wydłużyć czas koherencji ich kubitu.
Twórcy mechanicznego kubitu pracują teraz nad stworzeniem kwantowej bramki logicznej, odpowiednika bramek logicznych w tradycyjnych komputerach, za pomocą których przeprowadzane są obliczenia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Instytutu Fizyki UJ pracują nad prototypowym wykrywaczem z działem neutronowym, który będzie rozpoznawać potencjalnie niebezpieczne zatopione materiały. Dzięki niemu możliwe będzie określenie składu podejrzanych substancji, znajdujących się pod wodą, w sposób zdalny, zatem i bezpieczny dla nurków oraz naukowców. Zespół prowadzony przez doktora Michała Silarskiego i profesora Pawła Moskala dowiódł, że za pomocą działa neutronowego można określić skład zatopionych substancji i stworzył koncepcję detektora, który eliminuje zakłócenia powstające podczas odczytu w wodzie.
Nowe urządzenie dostarczy informacji na temat podejrzanych substancji, dzięki czemu, zanim zbliżą się do niej ludzie, będzie wiadomo, z czym mamy do czynienia, a zatem i jak należy postępować. Urządzenie ma być nie większe niż walizka. Może być ono zamontowane na podwodnej, zdalnie sterowanej sondzie, zdolnej do pracy również na większych głębokościach. Ważne jest jedynie, by taka sonda znalazła się blisko badanego przedmiotu, tak aby z możliwie minimalnej odległości skierować na niego wiązkę neutronów. To pozwoli rozpoznać pierwiastki wchodzące w skład zatopionych substancji, również tych, które są zamknięte w pojemnikach. Naszą metodą możemy wykryć na przykład węgiel, wodór, tlen, azot, siarkę, chlor, a także gazy bojowe zawierające arsen – mówi doktor Silarski.
Wspomniane działo neutronowe zderza jony deuteru z trytem. Dzięki temu emituje neutrony, które przenikają przez zanurzony obiekt i wzbudzają atomy w badanych substancjach. Atomy te emitują kwanty gamma, które rejestruje detektor opracowany na UJ. Jako że każdy z pierwiastków ma swój charakterystyczny odczyt kwantów gamma, możliwe jest określenie składu substancji znajdującej się w zatopionym pojemniku. Wyeliminowanie zakłóceń generowanych przez wodę jest możliwe dzięki zastosowaniu specjalnych rur wypełnionych powietrzem. To przez nie kierowana jest wiązka neutronów. Jakość odczytu zależy więc od tego, jak blisko uda się podpłynąć do badanego pojemnika.
Badanie trwa około 10 sekund, a do poprawnego odczytu wystarczy, by urządzenie znalazło się o kilkadziesiąt centymetrów od substancji. Nie musi mieć z nią bezpośredniego kontaktu. Nasza metoda w zasadzie pozwoli zidentyfikować każdą substancję z katalogu tych, które uznaje się za niebezpieczne i które zalegają na dnie zbiorników wodnych – zapewnia doktor Silarski.
Badania tego typu są niezwykle ważne. Chociażby po to, by określić, jakie środki bojowe zatopiono w Bałtyku. O problemie tym można przeczytać w wywiadzie, którego udzielił nam doktor Tomasz Kijewski z PAN.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.